CONTENTS

SYSTEMS SCIENCE AND CYBERNETICS

Systems Science and Cybernetics - **Volume 1 No. of Pages:** 397 **ISBN:** 978-1-84826-202-7 (eBook) **ISBN:** 978-1-84826-652-0 (Print Volume)

Systems Science and Cybernetics - **Volume 2 No. of Pages:** 490 **ISBN:** 978-1-84826-203-4 (eBook) **ISBN:** 978-1-84826-653-7 (Print Volume)

Systems Science and Cybernetics - **Volume 3 No. of Pages:** 390 **ISBN:** 978-1-84826-204-1 (eBook) **ISBN:** 978-1-84826-654-4 (Print Volume)

For more information of e-book and Print Volume(s) order, please **click here**

Or contact : eolssunesco@gmail.com

CONTENTS

Preface

VOLUME I

Systems Science and Cybernetics: The Long Road to World Sociosystemicity

Francisco Parra-Luna, Universidad Complutense de Madrid, Spain

- 1. Introduction
- 2. The Essential Features of the Systemic Method
- Types of Systems
 The Universal Scope of Systems
- 5. Current Trends
 - 5.1. The Return of the Subject
 - 5.2. Information Systems
 - 5.3. Artificial Intelligence
 - 5.4. Internet
 - 5.5. Management
 - 5.6. Critical Systems Theory
 - 5.7. The "World" System
 - 5.8. Systemic Ethics
 - 5.9. Theoretical-Methodological Integration
 - 5.10. Formal Systems
 - 5.11. Biomedical Studies
- 6. The Social System Concept: Differential Characteristics
- 7. Social Synergy as a Rational Design
- 8. Content and Structure of Contributions to this Theme
- 9. Application of Systems Science and Cybernetics: Modeling Society
- 10. Does the System Change?
- 11. Needs and Values: the Reference Pattern of Values
- 12. System Outputs: Raison D'Être of "Systems Science and Cybernetics" 12.1. The Empirical Indicators
- 13. An Axiological Model of the World Pseudosystem
- 14. A New Model for the World System?
- 15. Conclusion

System Theories: Synergetics

Hermann P.J. Haken, University of Stuttgart, Germany

53

- **Review of Subject Articles** 1.
 - 1.1. "History and Philosophy of the Systems Sciences: The Road Toward Uncertainty"
 - 1.2. "General Systems Theory"
 - 1.3. "Living Systems Theory"
 - 1.4. "Entropy Systems Theory"
 - 1.5. "Actor-System Dynamics Theory"
 - 1.6. "Ethics as Emergent Property of the Behavior of Living Systems"
 - 1.7. "Axiological Systems Theory"

 - 1.8. "Evolutionary Complex Systems"
 1.9. "Epistemological Aspects of Systems Theory Related to Biological Evolution"
 - 1.10. "Socio-Technical Systems: History and State-of-the Art"
 - 1.11. "The Geometry of Thinking"
 - 1.12. "Systemology: Systemic and Non-Systemic Entities"
- 2. Definition of Synergetics
- 3. Goals and General Approaches

- 4. Some Typical Examples
 - 4.1. The Laser
 - 4.2. The Convection Instability of Fluid Dynamics
 - 4.3. An Example from Sociology and Linguistics
- 5. Basic Concepts
- 6. Applications to Science
 - 6.1. Physics
 - 6.1.1. Mechanics
 - 6.1.2. Fluid Dynamics
 - 6.1.3. Magneto-Hydrodynamics
 - 6.1.4. Semi-Conductors
 - 6.1.5. Josephson Junctions
 - 6.1.6. Lasers
 - 6.1.7. Nonlinear Optics
 - 6.2. Chemistry
 - 6.3. Mechanical Engineering
 - 6.4. Electrical Engineering
 - 6.5. Biology
 - 6.5.1. Evolution of Living Matter
 - 6.5.2. Evolution of Species
 - 6.5.3. Morphogenesis
 - 6.5.4. Rhythms
 - 6.5.5. Movement Science
 - 6.5.6. Ecology
 - 6.5.7. Medicine
 - 6.6. Psychology
- 7. Applications to Technology
 - 7.1. Computer Science
 - 7.2. Informatics
 - 7.3. Telecommunication
- 8. Applications to Humanities
 - 8.1. Economy
 - 8.2. Sociology
 - 8.3. Linguistics
 - 8.4. Culture Including Art and Literature
 - 8.5. Philosophy
 - 8.6. Epistemology
- 9. Mathematical Tools
- 10. Relations to Other Approaches

History and Philosophy of the Systems Sciences: The Road Toward Uncertainty Charles Oscar Francois, GESI, Grupo de Estudio de Sistemas, Argentina

- 1. Introduction
- 2. Medieval Universals
- 3. The Snake of Rational Curiosity alive in Medieval Garden
- 4. The Slow Dawn of Technology in Medieval Europe
- 5. Descartes, the not very Systemic Systemist
- 6. The Expansion of the Universe of Knowledge
- 7. The Twilight of Scientific Simplicity: A Can of Conceptual Worms in 20th Century Science
- 8. In Search of a New Coherence
 - 8.1. Overview
 - 8.2. Bertalanffy, the Stitcher
 - 8.3. Energy Rules
 - 8.4. Cybernetics in its Prime
 - 8.5. New Views on Organization
 - 8.6. Cybernetics Observed

- 8.7. The Nature of Autonomy
- 8.8. New Views on Order and Disorder
- 8.9. Structure and Function in a New Light
- 8.10. Models for Autogenesis, Self Construction and Autopoiesis
- 8.11. Thermodynamics Reconsidered
- 8.12. Networks and Networkers: Natural and Artificial
- 8.13. Societies as Systems
- 8.14. New Concepts, Models and Methodologies
- 8.15. Practical Systemists
- 9. Conclusion

General Systems Theory

Anatol Rapoport, University of Toronto, Canada

- 1. Contributions of General System Theory to the Philosophy of Science
 - 1.1. A Mathematical Model of Equifinality
 - 1.2. A More General Model of Equifinality
 - 1.3. The Search for a Unified Language of Science
 - 1.4. The Evolutionary Approach to the Problem of Unifying the Language of Science
 - 1.5. The Rigorously Justified Analogy the Scientific Metaphor
- 2. Reductionism versus Holism
- 3. The Second Industrial Revolution
 - 3.1. Automatization of War
 - 3.2. Enterprises perceived as Systems
- 4. The Planet as a System
 - 4.1. System Evolution as an Experimental Science
 - 4.2. The Institution as an "Organism"
 - 4.3. Causes of Wars

Living Systems Theory

G.A. Swanson, *Tennessee Technological University, USA* James Grier Miller, *University of California, USA*

- 1. Introduction
- 2. Basic Concepts
 - 2.1. Concrete Systems
 - 2.2. Matter-Energy
 - 2.3. Information
 - 2.4. Meaning
 - 2.5. Conceptual Systems
 - 2.6. Information and Entropy
 - 2.7. Structure, Process and State
 - 2.8. Purpose and Goals
- 3. Characteristics of Living Systems
- 4. The Principle of Fray-Out
- 5. Levels of Life
- 6. Critical Subsystems
- 7. Observable Structures and Processes

Entropy Systems Theory

Kenneth D. Bailey, University of California, USA

- 1. Introduction
- 2. History
 - 2.1. Thermodynamic Entropy

152

137

112

iii

- 2.2. Boltzmann's Entropy
- 2.3. Information Theory Entropy
- 2.4. Entropy in General Systems Theory
- 2.5. Social Entropy
- 3. Criteria for Entropy Evaluation
- 4. Assessing the Past
- 5. Future Research
- 6. Conclusion

Actor-System-Dynamics Theory

Tom R. Burns, Uppsala University, Sweden Thomas Baumgartner, Swiss Technical University, Switzerland Thomas Dietz, George Mason University, USA Nora Machado, Uppsala University, Sweden

- 1. Background and Foundations
 - 1.1. Background and Overview
 - 1.1.1. Actors and Social Interaction
 - 1.1.2. Major Mechanisms of Social Stability and Transformation
 - 1.1.3. Institutional and Cultural Structures
 - 1.1.4. Material and Ecological Conditions
 - 1.1.5. Rule Governed Social Interactions Produce Concrete Outcomes and Developments
 - 1.2. Social Rule System Theory: Institutions and Cultural Formations1.2.1. The Universality of Social Rule Systems and Rule Processes
 - 1.2.2. Adherence to Social Rules and Rule Systems
 - 1.2.3. Institutions and Complex Institutional Arrangements
 - 1.3. The Theory of Consciousness and Collective Representations
 - 1.4. Socio-Cultural Evolutionary Theory
- 2. Applications and Policy Implications: The Knowledge Problematique vis-à-vis Complex Systems
 - 2.1. Introduction
 - 2.2. Information and Accounting Systems
 - 2.3. Bounded Knowledge and the Limits of Control of Complex Systems

Ethics as Emergent Property of the Behavior of Living Systems Gianfranco Minati, *Polytechnic University of Milan, Italy*

195

- 1. Introduction
- 2. Ethics
- 3. Systemic Aspect of Ethics
 - 3.1. Relations and Interactions
 - 3.2. Systems
 - 3.2.1. Example of a Methodology based on Systemics
 - 3.2.2. Closed and Open Systems
 - 3.2.3. Ethics of a Social System
 - 3.2.4. Ethics of the Global Social System
- 4. Ethics as Emergent Property of Social Systems
- 5. Interactions among Ethics
- 6. Some Metaphors
- 7. Effectiveness of an Ethics
- 8. Growth, Development, and Sustainable Development in Economic Systems: The Role of Ethics
 - 8.1. The Concepts of Growth and Development
 - 8.2. Growth Process Representation
 - 8.3. Development Process Representations
 - 8.3.1. Development as a Sequence of Linked Growth Processes
 - 8.3.2. Development as Harmonic Growth Processes
 - 8.3.3. Development as Emergent from Interacting Growth Processes

8.3.4. Sustainable Development

- 9. Relationship between Ethics and Quality
- 10. Systemic View of Ethics to Detect, Improve, and Design Quality of Life
- 11. Conclusions

Axiological Systems Theory Francisco Parra-Luna, Universidad Complutense de Madrid, Spain

225

- 1. Introduction
- 2. Fundamental Principles of Axiological Systems Theory
 - 2.1. The Values Production Principle
 - 2.2. The Synergetic Principle
 - 2.3. The Transforming Principle
 - 2.4. The Teleological Principle
 - 2.5. The Integrative Principle
- 3. John van Gigch's Contribution
 - 3.1. Chapter 7—The Morality of Systems
 - 3.2. Chapter 10—Social Indicators and the Quality of Life
- 4. The Basic Transformation Model
 - 4.1. Inputs
 - 4.2. Transformation
 - 4.3. Outputs
 - 4.4. Control
 - 4.5. Environment
- 5. The Solved Problems of Axiological Systems Theory
 - 5.1. The Universalisation of Outputs
 - 5.2. The Quantification Problem
 - 5.3. The Standardization of Indicators
- 6. Some Practical Applications of Axiological Systems Theory
 - 6.1. Organizational Efficiency
 - 6.2. Deviation Analysis
 - 6.3. Social Change
 - 6.4. Ethical Behavior
 - 6.5. Other Applications
- 7. Conclusion

Evolutionary Complex Systems

Iris Belkis Bálsamo, National Academy of Sciences, Argentina

- 1. Conceptual Framework
 - 1.1. Systems
 - 1.1.1. Structure
 - 1.1.2. Organization
 - 1.2. Complexity
 - 1.3. Self-Organization
 - 1.4. Evolution
 - 1.4.1. Brief History
 - 1.4.2. Multiple Concepts
- 2. Self-contained Conceptualization
- 3. Multiplicity of Evolutionary Complex Systems and Sustainability
- 4. Evolutionary Complex Systems and Knowledge
- 5. Conclusions

Epistemological Aspects of Systems Theory Related to Biological Evolution

Enzo Tiezzi, University of Siena, Italy

268

Nadia Marchettini, University of Siena, Italy

- 1. Integrating Epistemology of Thermodynamics and of Biological Evolutionary Systems
 - 1.1. Entropy and Biological Evolution
 - 1.2. Biosphere, Entropy, and Dissipative Structures
- 2. Thermodynamics of Ecosystems and of Biological Evolution
 - 2.1. The Time Paradox: Towards an Evolutionary Thermodynamics
 - 2.2. Non-equilibrium Thermodynamics
- 3. Towards an Evolutionary Physics
 - 3.1. A New Concept: Ecodynamics
- 4. Concluding Remarks

Socio-Technical Systems: History and State-of-the Art

Edeltraud Hanappi-Egger, Vienna University of Technology, Austria

- 1. Introduction
- 2. The Role of Automation of Work Processes
- 3. The Requirement of Flexible Human Skills: Road to a Socio-Technical View
- 4. The Socio-Technical System Approach with Respect to Information- and Communication Technologies
- 5. Conclusion

The Geometry of Thinking

Curt McNamara, Digi International, USA

- 1. Generalized Principles
- 2. Universe
- 3. System
- 4. Structure
- 5. Pattern Integrity
- 6. Tetrahedron
- 7. Tensegrity
- 8. Synergy
- 9. Precession
- 10. Design Science
- 11. Sustainability
- 12. Fundamental Laws of Systems Science
- 13. Modeling a System
 - 13.1. Defining the Connections
 - 13.2. Inputs and Outputs
 - 13.3. Flows and Storage
 - 13.4. Boundary
 - 13.5. Design

About EOLSS

VOLUME II

Systems Approaches: A Technology for Theory Production J. Gutierrez, *Universidad Europea de Madrid, Spain*

Juan Miguel Aguado, St. Anthony Catholic University, Spain Rafael Beneyto, Universidad de Valencia, Spain

1. Review of Subject Articles

304

291

341

2. Epistemologies of Production

- 2.1. The Instrumental Shift of Subject/World Relation
- 2.2. Thinking Techniques
- 2.3. Science as "Technics"
- 3. Genealogy of the System
 - 3.1. The Machine Metaphor
 - 3.2. The Idea of Machine
 - 3.3. The System Approach as a Logic Machine
- 4. Systems Theory as Technology
 - 4.1. Subject and Object as (Social) Products and Producers
 - 4.2. Towards a Complex Concept of Technology
- 5. Epistemic Implications of Systems Approaches
 - 5.1. Meta-technology
 - 5.2. Epistemic Complexity in Science
 - 5.3. Society, Non-trivial Machines, and Self-observation

The Systems Sciences in Service of Humanity

Alexander Laszlo, Syntony Quest, USA

Ervin Laszlo, Club of Budapest, Hungary

- 1. Introduction
- 2. Transformations in Society
 - 2.1. The Subject of Societal Transformation
 - 2.2. The Interpretation of Societal Transformation
- 3. The Relevance of the Systems Sciences
- 4. Systems Sciences as a Field of Inquiry
 - 4.1. Definition of System
 - 4.2. Natural Systems
 - 4.3. Reduction to Dynamics
 - 4.4. Emergent Properties and Synergy
 - 4.5. General Theory
- 5. The Breadth and Diversity of the Systems Sciences
 - 5.1. Qualitative Aspects
 - 5.2. Systems and Environments
 - 5.3. Method
- 6. The Social Dimension of Systems Thinking
 - 6.1. Contrasting Worldviews
 - 6.2. Systemic Thinkers and Systems Thinkers
- 7. Recent Trends in the Humanities and the Systems Sciences
 - 7.1. A Range of Approaches
 - 7.2. Critical Systems Thinking
 - 7.3. Total Systems Intervention
 - 7.4. General Evolution Theory
 - 7.5. Social Systems Design
 - 7.6. Evolutionary Systems Design
 - 7.7. In Service of Humanity
- 8. A Bridge between Two Cultures and the Future

General Systems Weltanschauung

Jimenez-Lopez Elohim, Vienna University of Technology, Austria

59

- 1. Simplistic Generalizations have Engendered Civilizations
- 2. Humans Survive Simplistically
- 3. An Organismic Biology Emerged from GSW
- 4. Behavioral and Social Sciences Urgently Need GSW
- 5. Holistic Medicine and Education Generated by Implicit GSW

6. GSW Prospects

Metamodeling

Alan E. Singer, University of Canterbury, New Zealand

- 1. Introduction
- 2. Models
 - 2.1. Conceptual Models
 - 2.2. Relationships
- 3. Metamodels
- 4. Taxonomies
 - 4.1. Guides
 - 4.2. Metaforecasting
 - 4.3. Metamodel of OR/MS
- 5. Models of Outputs
 - 5.1. Simulation-metamodels
 - 5.1.1. Environmental Change
 - 5.1.2. Service Response Time
 - 5.1.3. Capital Projects
 - 5.2. Neural Networks
 - 5.3. Bootstrapping
 - 5.4. Mind-tools
- 6. Models as Objects of Choice
 - 6.1. Static Choice
 - 6.2. Feature-comparison
 - 6.3. Metarationality
 - 6.4. Metaoptimality
- 7. Other Conceptual Metamodels
 - 7.1. Design
 - 7.2. Transition
 - 7.3. Renewal
 - 7.4. Influence
 - 7.5. Replication
- 8. Hypermodeling
 - 8.1. Chaos
 - 8.2. Epistemology
 - 8.3. Synergy and Spirit
- 9. Conclusion

Designing Social Systems Bela H. Banathy, *Saybrook Graduate School and Research Center, USA*

- 1. The Design Imperative
- 2. What is Social Systems Design?
 - 2.1. What Design Is
 - 2.2. What Design is Not
 - 2.3. Design Problems are Ill-defined
- 3. Why do we Need Design Today?
 - 3.1. The New Realities
- 4. When Should We Design?
 - 4.1. Changes within the System
 - 4.2. Changing the Whole System
- 5. What is the Product of Design?
 - 5.1. Models: Definitions and Characterizations
 - 5.2. Models: Language and Utility
 - 5.3. Designers as Model Makers

6. What is the Process of Design?

- 6.1. The Process of Transcending
- 6.2. Envisioning and Creating the Image of the Future System
- 6.3. Designing the Systems
 - 6.3.1. The Definition of the System
 - 6.3.2. Functions
 - 6.3.3. The Organization that can Carry out the Functions
 - 6.3.4. Designing the Systemic Environment
- 6.4. Presenting the Outcome of the Design
 - 6.4.1. The Systems/Environment Model
 - 6.4.2. The Functions/Structure Model
 - 6.4.3. The Process/Behavioral Model
- 7. Who Should be the Designers?
 - 7.1. The First Generation Approach
 - 7.2. The Second Generation
 - 7.3. The Third Generation
- 8. Building a Design Culture
- 9. What Values Can Design Add to our Society?
- 10. A Closing Thought

A Systems Design of the Future

Mario Bunge, McGill University, Canada

- 1. Introduction
- 2. Macrosocial Issues and Their Inherent Values and Morals
- 3. Utopianism and Ideals without Illusions
- 4. Social Engineering: Piecemeal and Systemic
- 5. Top-down Planning
- 6. Systemic Democratic Planning
- 7. Growth and Development
- 8. Integral and Sustainable Development
- 9. The Future of Social Studies

Soft Systems Methodology

Ricardo A. Rodriguez-Ulloa, Andean Institute of Systems, Peru

- 1. Introduction
- 2. Problemology
 - 2.1. Problemology as a Systemic Attitude
 - 2.2. The Problem Solving System and The Problem Content System
 - 2.3. Tipology of Problems
 - 2.3.1. Hard Problems
 - 2.3.2. Soft Problems
 - 2.4. Techniques for Defining and Solving Problems
- 3. Soft Systems Methodology SSM: A General View
 - 3.1. Stage 1: Ill Structured Situation
 - 3.2. Stage 2: Structured Situation (Rich Picture)
 - 3.3. Stage 3: Root Definitions
 - 3.4. Stage 4: Conceptual Models
 - 3.5. Stage 5: Comparison 4 vs 2
 - 3.6. Stage 6: Culturally Feasible and Systemically Desirable Changes
 - 3.7. Stage 7: Implementation
- 4. Conclusions, Recommendations and Learning Points
 - 4.1. Conclusions
 - 4.2. Recommendations
 - 4.3. Learning Points

122

Social Problem Diagnosis: A Sociopathology Identification Model

Paris J. Arnopoulos, Concordia University, Canada

- 1. Introduction
- 2. CONTEXT: Anatomy of Sociophysics
 - 2.1. Basic Syntax
 - 1.1.1. SET Frames
 - 1.1.2. MEF Aspects
 - 1.1.3. ESE Spheres
 - 2.2. Systems
 - 2.2.1. Sociomass
 - 2.2.2. Sociomorals
 - 2.2.3. Sociosectors
 - 2.3. Symptoms
 - 2.3.1. Criteria
 - 2.3.2. Indices
 - 2.3.3. Taxonomy
- 3. CONTENT: Pathology of Socioproblematics
 - 3.1. Cognitive Inputs
 - 3.1.1. Epistemology
 - 3.1.2. Deontology
 - 3.1.3. Physiology
 - 3.2. Contemplative Conversion
 - 3.2.1. Objective Functions
 - 3.2.2. Subjective Opinions
 - 3.2.3. Collective Traditions
 - 3.3. Conceptual Output
 - 3.3.1. Problemology
 - 3.3.2. Pathology
 - 3.3.3. Methodology
 - CONCEPT: Methodology of Sociodiagnostics
 - 4.1. The Nature of Things
 - 4.1.1. Data Bank
 - 4.1.2. Physiological Paradigm
 - 4.1.3. Semiosis
 - 4.2. Human Values
 - 4.2.1. Dominant Dogma
 - 4.2.2. Ideology
 - 4.2.3. Axiosis
 - 4.3. Global Pathology
 - 4.3.1. Salient Symptoms
 - 4.3.2. Pathology
 - 4.3.3. Decisive Judgement
- 5. Conclusion

4.

Critical Systems Thinking

Karl-Heinz Simon, University of Kassel, Germany

- 1. Introduction: The Role of Critical Systems Thinking within the Systems Movement
- 2. Origins: Opposition to the Hard Systems Approach, Improvement of Soft Approach
- 3. Confrontation: Different Approaches Compared
- 4. The Five Commitments of Critical Systems Thinking
- 5. A System of System Methodologies
- 6. Outlook

xi

Total Systems Intervention

Lorraine Warren, University of Lincoln, UK

- Introduction
 Total System
 - Total Systems Intervention (TSI 1)
 - 2.1. Principles
 - 2.2. Process
 - 2.2.1. Creativity
 - 2.2.2. Choice
 - 2.2.3. Implementation
- 3. Local Systemic Intervention (LSI/TSI 2)
 - 3.1. A comparison of TSI 1 and LSI
 - 3.2. Principles
 - 3.3. Process
 - 3.3.1. Critical Review Mode
 - 3.3.2. Problem-solving Mode 3.3.3. Critical Reflection Mode
- 4. Application
- 5. Future Challenges

Integrative Systems Methodology

Markus Schwaninger, University of St. Gallen, Switzerland

- 1. Introduction
- 2. The State of Systemic Problem-solving
 - 2.1. Two Methodological Roots
 - 2.2. The Quest for Synthesis
 - 2.3. The Challenge of Implementation
 - 2.4. The Challenge of Creation
 - 2.5. The Challenge of Validation
- 3. Outline of Integrative Systems Methodology
 - 3.1. Purpose and Scope
 - 3.2. An Outline of ISM
- 4. A Case Study
 - 4.1. Content Loop
 - 4.2. Context Loop
 - 4.3. Follow-up
- 5. Reflection

WSR Decisions for a Sustainable Future

Z. Zhu, University of Hull, UK

- 1. Introduction
- 2. Philosophy
- 3. Methodology
- 4. Application
- 5. Conclusion

Psychological and Cultural Dynamics of Sustainable Human Systems Paul Maiteny, *South Bank University, UK*

- 1. Introduction
- 2. Dimensions of Human Life-support Systems and Sustainability
 - 2.1. Outer Dimensions: Physical Sustainability
 - 2.2. Inner Dimensions: Psycho-emotional Sustainability and Development

246

271

223

- 2.3. Dynamics of Culture: Physical Law, Experience, and the Construction of Meaning
- 2.4. The Systemic Organization of Meaning and its Effects
 - 2.4.1. Low-order Meaning
 - 2.4.2. Middle-order Meaning
 - 2.4.3. High-order Meaning
- 3. Consequences of Maladaptive Meaning
 - 3.1. Maladaptive Meaning and its Ecological Consequences
 - 3.2. Psycho-emotional Consequences of Maladaptive Meaning
- 4. Can Ecological and Emotional Well-being go together?
 - 4.1. Numinous Experience, Sacred Meaning, and Sustainability
 - 4.2. Oscillation Theory: Dynamics for Transforming Meaning into Sustainable Living
 - 4.2.1. Intra-dependence, or Realization (Experience of action)
 - 4.2.2. Regression to Extra-dependence (Experience of fragmentation)
 - 4.2.3. Extra-dependence, or Identification (Experience of Meaningfulness)
 - 4.2.4. Transformation to Intra-dependence (Experience of Transforming Convictions into Action)
- 5. Conclusion: Reducing Impacts while Increasing Well-being

The Dynamics of Social and Cultural Change

R. Vanderstraeten, Utrecht University, Netherlands

- 1. Introduction
- 2. Systems Theory
 - 2.1. 'Paradigm Change' in Systems Theory
 - 2.2. Social Systems Theory
 - 2.3. Second Order Cybernetics
- 3. Sociological Theory
 - 3.1. Instrumental Activism
 - 3.2. Functional Differentiation
 - 3.3. Ecological Communication
- 4. Conclusion

Formal Approaches to Systems

Antonio Caselles, Universidad de Valencia, Spain

- 1. Introduction
- 2. A Template to Analyze General Systems Approaches
 - 2.1. Targets of a General Systems Approach
 - 2.2. Towards a Unified General Systems Theory
- 3. Current General Systems Approaches
 - 3.1. Klirs Approach
 - 3.2. Mesarovic and Takahara's Approach
 - 3.3. Wymore's Approach
 - 3.4. Lin and Ma's Approach
 - 3.5. Zeigler's Approach
 - 3.6. Caselle's Approach
- 4. The Basic General Systems Concepts
- 5. Other Comparisons and Open Questions
- 6. An Eventual Unified Approach to General Systems
- 7. Conclusion

The Quantification of System Domains

John P. van Gigch, California State University, USA

1. Introduction

295

- 2 Quantification, Mathematization and Measurement
- The Scientific Imperative and the Quantification Problem 3.
- 3.1. How Does A Scientific Discipline become more Rigorous?
- 4. Quantification Means Representation and Evaluation
- 5. Quantification. Formal Definition
- 6. Adequacy in the form of Quantification
- 7. Quantification of Attributes in Soft System Domains
 - 7.1. An Unfinished Business
 - 7.2. Examples of Inadequate/Unsuitable Quantification of a Soft-System Domain
 - 7.3. Three Cases Illustrating Adequate/Suitable Quantification Through Mathematization
- 8. The Formalization and Quantification of Complexity
- 9. The Failure in Modeling Large-Scale Systems
 - 9.1. A Case of Attempted Quantification which may Fail
 - 9.2. The Metalevel Arbiter
 - 9.3. Quantification vs. Influencing Behavior
 - 9.4. Postscript
- 10. Traditional Approaches to the Evaluation Problem. The Theory of Measurement
- 11. The Application of Qualitative and Quantitative Reasoning
- 12. Quantification Theory and Quantifiers in Logic
- 13. Implicit Quantification and Implicit Quantifiers
- 14. A [Not Quite] "New" Quantification Approach. Implicit Quantification
- 15. Implicit Quantifiers in a Hierarchy of Imperatives
- 16. A Simple Calculus of Quantifiers
 - 16.1. Aesthetic Imperative
 - 16.2. Ethical Imperative
 - 16.3. Epistemological Imperative
 - 16.4. Political Imperative
 - 16.5. Legal Imperative
 - 16.6. Scientific Imperative
 - 16.7. Economic Imperative
 - 16.8. Management Imperative
- 17. Conclusions

Chaos: Back to "Paradise Lost": Predictability. The Century of the Emergence of Systemic **Thought and Chaos Theory**

Lorenzo Ferrer Figueras, Universidad de Valencia, Spain

363

387

- 1. Introduction
- 2. The 20th century: the difficult co-existence of Mechanicist Thought and Systemic Thought: emergence of chaos
- 3. Structure
- 4. A multi-stage modeling process to research on the detection and control of chaos dynamics in the evolution of biological and social systems
- An Outstanding Example of a Chaotic Dynamic System: the Logistic Map 5.
- Other important chaotic systems 6.
- 7. Conclusions

Transdisciplinary Unifying Theory: Its Formal Aspects

Marilena Lunca, World Organization of Systems and Cybernetics (WOSC), The Netherlands

- 1. Introduction
- Rationales to Unifying Transdisciplinarily 2.
- External and Internal Constraints 3
 - 3.1. Related Constraints
 - 3.2. The Independent Constraint
- 4. Systemhood Unifying Theories

- 4.1. Primitive and First-derivative Terms
- 4.2. The Domain of the Unifying Theory
- 4.3. Restrictions on Interpretation
- 4.4. Cybernetic and Anticipative Systems
- 5. Unifying the Unifying Theories
 - 5.1. From the Physical to Non-physical and Back
 - 5.2. The Model of the Unifying Theory
- 6. Foreseeable Developments

General Systems Problem Solver

George J. Klir, State University of New York at Binghamton, USA

- 1. Introduction
- 2. Classification of Systems in GSPS
 - 2.1. Epistemological Categories of Systems
 - 2.2. Methodological Classification of Systems
- 3. Systems Problem Solving
 - 3.1. Problem Requirements
 - 3.2. Systems Problems
- 4. Methodological Outcome of the GSPS
- 5. Conclusions

About EOLSS

VOLUME III

- **Cybernetics: Cybernetics and the Theory of Knowledge** Ernst von Glasersfeld, *University of Massachusetts, Amherst, USA*
- 1. Review of Subject Articles
 - 1.1. History of Cybernetics
 - 1.2. Existing Cybernetics Foundations
 - 1.3. Second-Order Cybernetics
 - 1.4. Knowledge and Self-Production Processes in Social Systems
 - 1.5. Cybernetics and the Integration of Knowledge
 - 1.6. Cybernetics and Communication
 - 1.7. Bipolar Feedback
- 2. First-Order Cybernetics
 - 2.1. Historical Roots
 - 2.2. The Notion of Feedback
 - 2.3. The Function of Difference
 - 2.4. Self-Regulation and Equilibrium
 - 2.5. The Domestication of Teleology
 - 2.6. Purpose and Goal-Directed Behavior
 - 2.7. Communication

3.

- Second-Order Cybernetics
 - 3.1. The Epistemological Problem
 - 3.2. A New Theory of Cognition
 - 3.3. The Construction of Knowledge
 - 3.4. Rational Models and the Role of the Observer
 - 3.5. Operational Definitions
 - 3.6. Several Parallel Developments
 - 3.6.1. Radical Constructivism
 - 3.6.2. The Theory of Autopoiesis
 - 3.6.3. The Italian Operational School

410

463

- 4. Applications of Cybernetic Principles
 - 4.1. Anthropology and Sociology
 - 4.2. Psychotherapy
 - 4.3. Education
- 5. Conclusion

History of Cybernetics

Robert Vallee, Universite Paris-Nord, France

- 1. Origins of Cybernetics
 - 1.1. Contemporary Initiators
 - 1.2. Past Contributors
- 2. Basic Concepts
 - 2.1. Foundations
 - 2.1.1. Retroaction
 - 2.1.2. Information
 - 2.2. Other Important Concepts
 - 2.2.1. Variety
 - 2.2.2. Observers
 - 2.2.3. Epistemology and Praxiology
 - 2.2.4. Isomorphism and Multidisciplinarity
- 3. Links with Other Theories
- 4. Future of Cybernetics

Existing Cybernetics Foundations

Boris M. Vladimirski, Rostov State University, Russia

- 1. Introduction
- 2. Organization
 - 2.1. Systems and Complexity
 - 2.2. Organizability
 - 2.3. Black Box
- 3. Modeling
- 4. Information
 - 4.1. Notion of Information
 - 4.2. Generalized Communication System
 - 4.3. Information Theory
 - 4.4. Principle of Necessary Variety
- 5. Control
 - 5.1. Essence of Control
 - 5.2. Structure and Functions of a Control System
 - 5.3. Feedback and Homeostasis
- 6. Conclusions

Second Order Cybernetics

Ranulph Glanville, CybernEthics Research, UK

- 1. Introduction: What Second Order Cybernetics is, and What it Offers
- 2. Background—the Logical Basis for Second Order Cybernetics 2.1. A Reflection on First Order Cybernetics
 - 2.2. Circularity
- 3. Second Order Cybernetics-Historical Overview
 - 3.1. The Beginnings of Second Order Cybernetics
 - 3.2. Precursors
- 4. Theory of Second Order Cybernetics

59

22

34

XV

- 4.1. The Development of an Approach, Theories, and an Epistemology
- 4.2. Central Concepts of Second Order Cybernetics
- 5. Praxis of Second Order Cybernetics
 - 5.1. Second Order Cybernetics Extended into Practice
 - 5.2. Subject Areas
 - 5.2.1. Communication and Society
 - 5.2.2. Learning and Cognition
 - 5.2.3. Math and Computation
 - 5.2.4. Management
 - 5.2.5. Design
- 6. A Note on Second Order Cybernetics and Constructivism
- 7. Cybernetics, Second Order Cybernetics, and the Future
 - 7.1. A Third Order Cybernetics?
 - 7.2. Second Order Cybernetics: a Vanishing Conscience?
 - 7.3. Cyber this and Cyber that

Knowledge and Self-Production Processes in Social Systems Milan Zeleny, Fordham University, USA

1. Introduction

- 2. Social Systems
 - 2.1. Free-market "Invisibility"
 - 2.2. Social Kinship Networks
 - 2.3. Boundaries of Social Systems
- 3. Autopoiesis (Self-Production) of Networks
 - 3.1. Organization and Structure
 - 3.1.1. Concepts and Definitions
 - 3.2. Organizational Embedding
 - 3.3. The Role of Feedback
 - 3.4. Summary of Autopoiesis
- 4. Knowledge as Coordination of Action
- 5. Model of Autopoiesis
- 6. Autopoietic Social Systems
 - 6.1. Self-sustainability
 - 6.2. Regional Enterprise Networks
 - 6.3. Amoeba Systems
 - 6.3.1. Biotic Amoeba Analogy
 - 6.4. TCG Triangulation Networks
 - 6.5. Bat'a System of Management
- 7. Individuals in Networks

Cybernetics and the Integration of Knowledge

Bernard Scott, University for the Highlands, UK

- 1. Introduction
- 2. Cybernetic Explanation and the Concept of Mechanism
- 3. Cybernetic Epistemology
 - 3.1. Radical Constructivism
 - 3.2. What is Learning, What is Knowledge?
 - 3.3. A Model of "Coming to Know"
 - 3.4. A Model of "Knowledge Sharing"
- 4. The First Order Study of Natural Systems
- 5. Approaches to the Study of Social Systems
- 6. Cybernetics and the Arts, Humanities and Vocational Disciplines
- 7. Cybernetics and Philosophy
- 8. Concluding Comments

Cybernetics and Communication

Vladimir U. Degtiar, Moscow State University, Russia

- 1. Methodology
- 2. Communication between Man and Machine
- 3. Cybernetics and Communication on a Biological Level (cybernetics b)
- 4. Cybernetics and Communication on a Social Level (cybernetics s)
 - 4.1. Communicational Interactions and Consciousness
 - 4.2. Cognitive Communication
 - 4.3. Stability of Communication, Architecture of the Nervous System, and Organization
 - 4.4. Complex Problems of the Process of Communication

Bipolar Feedback Hector Sabelli, *Chicago Center for Creative Development, USA*

- 1. Introduction
- 2. Bipolar Feedback in Natural Processes
- 3. Models of Bipolar Feedback
- 4. Biotic Patterns Generated by Bipolar Feedback in Natural and Human Processes
- 5. Creative Development Generated by Bipolar Feedback
- 6. Feedback Models in Biology, Economics, and Psychotherapy
- 7. Conclusions

Computational Intelligence

Klaus Mainzer, University of Augsburg, Germany

- 1. Review of Subject Articles
 - 1.1. General Principles and Purposes of Computational Intelligence
 - 1.2. Neural Networks
 - 1.3. Simulated Annealing
 - 1.4. Adaptive Systems
 - 1.5. Biological Intelligence and Computational Intelligence
- 2. Introduction
- 3. Computability, Decidability, and Complexity
- 4. Computational Intelligence and Knowledge-based Systems
 - 4.1. Beginning of Artificial Intelligence (AI)
 - 4.2. Knowledge-based Systems and Problem Solving
- 5. Computational Intelligence and Neural Networks
 - 5.1. Beginning of Computational Networks
 - 5.2. Neural Networks and Learning Algorithms
- 6. Computational Life and Genetic Programming
 - 6.1. Computational Growth and Cellular Automata
 - 6.2. Computational Evolution and Genetic Programming
- 7. Computational Intelligence and Life in the World Wide Web

General Principles and Purposes of Computational Intelligence

Leonid Reznik, Victoria University, Australia

- 1. Introduction
- 2. Definition and Understanding of Computational Intelligence
- 3. Goals of Computational Intelligence and their Accomplishment to date
- 4. Goals for Future Research
- 5. Other Views of Computational Intelligence
- 6. Soft Computing
- 7. Computational Intelligence and Soft Computing: Combinations of different Components

129

148

- 7.1. General Principles
- 7.2. Neural Networks Fuzzy Systems7.2.1. Similarities and Differences7.2.2. Neuro-fuzzy Architecture7.2.3. ANFIS Systems
- 7.3. Neural Networks Evolutionary Programming
- 7.4. Example of the Combined Structure
- 8. Research Outcome Statistics

Neural Networks

Igor Vajda, Academy of Sciences of the Czech Republic, Czech Republic Jiri Grim, Academy of Sciences of the Czech Republic, Czech Republic

- 1. Introduction: Nervous Systems and Neurons
- 2. Perceptrons and More General Models of Neurons
- 3. Multilayered Perceptrons and General Neural Networks
- 4. Radial Basis Function Networks
- 5. Probabilistic Neural Networks
- 6. Self-Organizing Maps

Simulated Annealing: From Statistical Thermodynamics to Combinatory Problems Solving 249 Daniel Thiel, *ENITIAA, Nantes, France*

- 1. Complexities of Problems and Algorithms
- 2. Introduction to Global Search Methods
- 3. Contribution of Statistical Physics and Thermodynamics
- 4. The Simulated Annealing Algorithm
 - 4.1. The Simulated Annealing Algorithm
 - 4.2. Model Calibration and Algorithm Convergence
- 5. Examples of Problems Solved Thanks to Simulated Annealing
 - 5.1. The Quadratic Assignment Problem
 - 5.2. The Travelling Salesman Problem
- 6. Comparisons with Other Heuristics and SA Performance Improvements
 - 6.1. SA Comparisons and Complementarity with Other Heuristic Methods
 - 6.2. Future Prospects

Adaptive Systems

Rafael Pla-Lopez, University of Valencia, Spain

- 1. Introduction
- 2. Controllability
- 3. Fulfillment of Goals
- 4. Strategies of Decision
- 5. General Theory of Learning
- 6. Models of Probabilistic Learning
 - 6.1. General Linear Model of Probabilistic Learning
 - 6.2. Reciprocal Linear Model of Probabilistic Learning
 - 6.3. Adaptive Linear Model of Probabilistic Learning
- 7. Dilemma of the Prisoner
 - 7.1. Single Dilemma of the Prisoner
 - 7.2. Iterative Dilemma of the Prisoner
- 8. Anticipatory Adaptation
- 9. A General Model of Social Evolution

270

Biological Intelligence and Computational Intelligence

Gilbert A. Chauvet, Universite Paris V, France

- 1. Introduction
- 2. Historical Concepts of Intelligence
- 3. The Neurobiological Bases of Intelligence
 - 3.1. What is a Neural Network? Hierarchy and Functional Units
 - 3.2. Biological Intelligence is Based on Memorization and Learning
 - 3.3. An Approach to Biological Intelligence
 - 3.4. The "Intelligence" of Movement as a Cognitive Function
- 4. The Relationship between Intelligence as a Physiological Function and the Organization of the Nervous System
 - 4.1. A Theory of Functional Biological Organization
 - 4.1.1. The Conceptual Framework
 - 4.1.2. Functional Interactions are Identified by Structural Discontinuities
 - 4.1.3. A Three-dimensional Representation of a Biological System
 - 4.1.4. The S-Propagator Formalism Describes the Dynamics in the Structural Organization
 - 4.1.4.1. Fields and Functional Interactions
 - 4.1.4.2. S-Propagator Dynamics
 - 4.2. Neural Field Equations Based on S-Propagators
 - 4.3. The Cerebellum and the "Intelligence" of Movement
 - 4.3.1. The Cerebellar Cortex is a Network of Networks
 - 4.3.2. The Purkinje Unit Associated with the Deep Cerebellar Nuclei is the Functional Unit of the Cerebellar Cortex
 - 4.3.3. The Network of Purkinje Units
- 5. Biological Intelligence and Computational Intelligence
 - 5.1. The Brain and the Computer
 - 5.2. Cognition and Functionalism
- 6. Conclusion

About EOLSS