CONTENTS

VOLUME VI

Soils and Soil Sciences

Willy H. Verheye, National Science Foundation Flanders, Belgium and Geography Department University Gent, Belgium

- 1. Introduction
- 2. Soils And Soil Science
- 3. Soil Formation And Soil Forming Processes
 - 3.1. Weathering And Regolith Formation
 - 3.2. Soil Profile Formation And Horizon Development
- 4. The Soil Profile
- 5. Soil Composition And Soil Properties
 - 5.1. Soil Composition
 - 5.1.1. Organic Soils
 - 5.1.2. Mineral Soils
 - 5.2. Soil Texture
 - 5.3. Soil Structure
 - 5.4. Soil Consistence
 - 5.5. Soil Color
 - 5.6. Bulk Density And Soil Porosity
 - 5.7. Water Retention And Infiltration
 - 5.8. Soil Air And Aeration
 - 5.9. Organic Matter
 - 5.10. Soil PH
 - 5.11. Cation Exchange Complex
- 6. Soil Survey And Classification
 - 6.1. Types Of Soil Surveys
 - 6.2. Soil Survey Procedures
 - 6.3. Purpose And Use Of Soil Maps
 - 6.4. Soil Classification

A Brief History of Soil Science

Eric C. Brevik, Departments of Natural Sciences and Agriculture and Technical Studies, Dickinson State University, Dickinson, ND, USA

- 1. Introduction
- 2. Soil Science/Agriculture In Ancient Times And Early History (Up To 4th Century AD)
 - 2.1. Mesopotamia
 - 2.2. Greeks And Romans
 - 2.3. Other Mediterranean Civilizations
 - 2.4. Northern Europe
 - 2.5. Asia
 - 2.6. Americas
 - 2.7. Ancient Times And Early History Summary
- 3. Soil Science In The Middle Ages (5th To 14th Centuries AD)
 - 3.1. Byzantium And Europe
 - 3.2. Arabia And The Middle East
 - 3.3. Southeast Asia
- 4. Soil Science In The Renaissance Period (15th To 17th Centuries)
 - 4.1. Studies In Soils And Plant Nutrition
 - 4.2. Soils And Government
 - 4.3. Soils Recognized By Geologists
 - 4.4. Drainage Of Wet Soils

40

- 5. Soil Science In The Age Of Enlightenment (18th Century)
 - 5.1. The "Humus Theory"
 - 5.2. Soil As An Evolutionary Body
 - 5.3. Beginnings Of Soil Mapping
- 6. Soil Science Becomes A True Science (19th Century)
 - 6.1. Lewis And Clark
 - 6.2. The "Mineral Theory"
 - 6.3. Agrogeology
 - 6.4. Soil Mapping
 - 6.5. Darwin And Soil Biology
 - 6.6. The Profile Concept
 - 6.7. Dokuchaiev And The Birth Of Genetic Soil Science
- 7. Modern Soil Science (20th Century)
 - 7.1. Genetic Soil Science Spreads
 - 7.2. National Detailed Mapping Programs
 - 7.3. Soil Erosion
 - 7.4. The Internationalization Of Soil Science
 - 7.5. Soil Science Moves Beyond Agriculture
- 8. Concluding Remarks

Pedogenesis and Soil Forming Factors

Antonie Veldkamp, Wageningen Agricultural University, Department of Environmental Sciences, Wageningen, The Netherlands

- 1. Pedogenesis And Soil Forming Factors
 - 1.1. Organic Surface Horizon
 - 1.2. Hydromorphism
 - 1.3. Textural Differentiation
 - 1.4. Calcic, Gypsiferous And Saline Properties
 - 1.5. Vertic Properties
 - 1.6. Podzolization
 - 1.7. Andic Properties
 - 1.8. Ferralitization
 - 1.9. Chronosequences
- 2. Soil Properties Affecting Land Use Potential
 - 2.1. Properties Affected By Climate
 - 2.1.1. Wet (Sub)Tropical Climates
 - 2.1.2. (Semi) Arid Climates
 - 2.1.3. Steppe Climates
 - 2.1.4. (Sub)Humid Temperate Climates
 - 2.1.5. Permafrost Conditions
 - 2.2. Properties Affected By Parent Material
 - 2.3. Properties Affected By Topography
 - 2.4. Properties Affected By Age
 - 2.5. Properties Affected By Man
- 3. Soil Variability
- 4. How Do Soil Properties Affect Land Use And Land Cover
 - 4.1. Properties That Can Be Changed At Short Notice
 - 4.2. Properties That Can Be Partly Modified
 - 4.3. Properties That Cannot Be Changed With Current Management Techniques
- 5. How Land Use Affects Soil Properties
 - 5.1. Land Use Intensification
 - 5.1.1. Long Term Cultivation
 - 5.1.2. Multiple Cropping Systems
 - 5.1.3. Irrigation
 - 5.2. Land Use Conversion
 - 5.2.1. Conversion Of Forest

- 5.2.2. Conversion Of Grasslands
- 5.2.3. Conversion Of Coastal Wetlands
- 6. Discussion And Conclusions

Soil Properties and Pedometrics

Richard Murray Lark, Biomathematics and Bioinformatics Division, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

- 1. Introduction
- 2. Origins Of Pedometrics
- 3. Mathematical And Statistical Techniques Used By Pedometricians
 - 3.1. Well-Established Workhorses
 - 3.1.1. Geostatistics
 - 3.1.2. Multivariate Analysis
 - 3.1.3. Fuzzy Sets
 - 3.2. Emerging Methodologies
 - 3.2.1. Bayesian Maximum Entropy
 - 3.2.2. Wavelet Transforms
- 4. Some Applications And Preoccupations
 - 4.1. Precision Agriculture
 - 4.2. Digital Soil Mapping
 - 4.3. Soil Monitoring
- 5. Future Prospects
 - 5.1. Pedogenesis in a Data Rich Environment
 - 5.2. Pedometrics And The Management Of Pedodiversity
 - 5.3. Pedometrics As A Unifying Discipline

Soil Geography and Classification

110

86

Otto Coenraad Spaargaren, ISRIC - World Soil Information, Wageningen, The Netherlands Jozef August Deckers, Division Soil and Water Management, Catholic University of Leuven, Belgium

- 1. Introduction
- 2. The Zonal Concept In Soil Classification A Historical Overview
- 3. Modern Soil Classifications
 - 3.1. Soil Geography And Soil Taxonomy
 - 3.2. Soil Geography And The FAO/UNESCO Soil Map Of The World
 - 3.3. Soil Geography And The World Reference Base For Soil Resources (WRB)
 - 3.4. Soil Geography And Other Systems Of Soil Classification
- 4. Role Of Soil Geography And Soil Classification In Land Use Planning And Land Cover Studies

Soil Physics

Willy R. Dierickx, *Retired from Ministry of the Flemish Community, Institute for Agricultural and Fisheries Research, Technology and Food Unit, Agricultural Engineering, Merelbeke, Belgium*

1. Introduction

2

- Soil Texture
 - 2.1. Mineral Soil Fractions
 - 2.1.1. Sand
 - 2.1.2. Silt
 - 2.1.3. Clay
 - 2.2. Organic Soil Fraction
 - 2.3. Particle Size Distribution
 - 2.3.1. Particle Size Analysis

- 2.3.2. Cumulative Particle Size Distribution Curve
- 2.3.3. Textural Triangle
- 3. Soil Structure
 - 3.1. Soil Structure Classification
 - 3.2. Soil Structure Characterization
 - 3.3. Aggregate Stability
- 4. Soil Physical Properties
 - 4.1. Specific Soil Surface
 - 4.2. Soil Density
 - 4.2.1. Particle Density 4.2.2. Bulk Density
 - 4.3. Porosity And Void Ratio
 - 4.3.1. Porosity
 - 4.3.2. Void Ratio
 - 4.4. Water Content
 - 4.5. Plasticity Index
- 5. Soil Hydraulic Properties
 - 5.1. Saturated Hydraulic Conductivity
 - 5.2. Unsaturated Hydraulic Conductivity
- 6. Agricultural Significance
 - 6.1. Importance Of Texture
 - 6.2. Importance Of Structure
 - 6.3. Importance Of Other Soil Physical Characteristics
- 7. Conclusions

Soil Chemistry and Soil Fertility

Isam I. Bashour, Faculty of Agricultural and Food Sciences, American University of Beirut, Bliss Street, Beirut, Lebanon.

- 1. Introduction
- 2. Soil Forming Factors And Processes
- 3. Soil Chemical Reactions
 - 3.1. The Inorganic Solid Phase
 - 3.2. The Organic Solid Phase
 - 3.3. The Liquid Phase 3.3.1. Infiltration
 - 3.3.2. Hydrolysis
 - 3.4. The Gaseous Phase3.4.1. Soil Air Quality3.4.2. Biochemical Effect Of Aeration
 - 3.5. Soil Acidity (PH)
 - 3.6. The Exchange Complex
 - 3.7. Oxidation And Reduction
- 4. Soil Fertility And Plant Nutrient Uptake
 - 4.1. Nutrient Fixation And Losses
 - 4.1.1. Macronutrients
 - 4.1.2. Micronutrients
 - 4.1.3. Beneficial Elements
 - 4.2. Fertilizer Application 4.2.1. Solid Fertilizers
 - 4.2.2. Fluid Fertilizers (Liquid And Suspension)
 - 4.3. Amount And Time Of Application
 - 4.4. Fertilizer Mobility In Soils
 - 4.5. Fertilizer Salt Index
 - 4.6. Interactions And Environmental Effects
 - 4.6.1. Inorganic Fertilizers
 - 4.6.2. Organic Pollution Sources

5. Impact Of Soil Chemical Conditions On Land Use And Land Cover

Soil Biology And Microbiology

Andreas De Neergaard, Department of Agricultural Sciences, Plant and Soil Science, Royal Veterinary and Agricultural University, Thorvalsenvej, 40, Frederiksberg, Denmark.

- 1. Introduction
- 2. Soil Biota
 - 2.1. Microbiota
 - 2.1.1. Bacteria
 - 2.1.2. Fungi
 - 2.1.3. Cyanobacteria And Algae
 - 2.1.4. Protozoa
 - 2.1.5. Metabolism Of Micro-Organisms
 - 2.2. Mesobiota
 - 2.3. Macrobiota
- 3. Species Diversity And Interaction With Soil Properties
 - 3.1. Numbers And Species Diversity
 - 3.2. Interaction With Soil Water Content
 - 3.3. Interactions With Food Webs And Soil Metabolism
 - 3.4. Interaction With The Rhizosphere
- 4. Biological Processes In Soils
 - 4.1. Microbial Activity And Accumulation Of Biomass
 - 4.2. Litter Decomposition And Turnover
- 5. Soil Functionality And Its Change Under Stress
- 6. Indicators Of Soil Quality
- 7. Soil Biota And Land Use
- 8. Conclusions

Soil Biochemistry

Qiaoyun Huang, Faculty of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

- 1. Introduction
- 2. Chemistry Of Soil Organic Matter
 - 2.1. Pools Of Organic Matter In Soils
 - 2.2. Formation Of Humic Substances
 - 2.2.1. The Lignin Theory
 - 2.2.2. The Polyphenol Theory
 - 2.2.3. Sugar-Amine Condensation
- 3. Soil Enzymes
 - 3.1. Classification By Location
 - 3.2. Classification By Function
 - 3.3. Properties Of Soil Enzymes
- 4. DNA In Soil
- 5. Carbon Cycling In Soil
 - 5.1. Decay Process
 - 5.2. Use Of 14C In Soil Organic Matter Studies
 - 5.3. Transformations In Wet Sediments
- 6. Biochemistry Of Soil Nitrogen
 - 6.1. Ammonification
 - 6.2. Nitrification
 - 6.3. Stabilization Of Soil Organic N
 - 6.4. Denitrification
 - 6.5. Use Of 15N In Soil Nitrogen Studies
- 7. Biochemistry Of Phosphorus And Sulfur In Soil

205

v

- 7.1. Phosphorus
- 7.2. Sulfur
- 8. Biochemical Interactions With Metals
 - 8.1. Complexation Of Metals With Soil Organic Components
 - 8.2. Biochemical Compounds As Chelating Agents
 - 8.3. Trace Metal Interactions With Humic Substances
- 9. Biochemistry Of Xenobiotics In Soil
 - 9.1. Effect Of Pesticides On Soil Processes
 - 9.2. Metabolism Of Pesticides In The Soil
- 10. Biochemistry Of The Rhizosphere
 - 10.1. Properties Of The Rhizosphere
 - 10.2. Use Of 14C In Rhizosphere Studies
 - 10.3. Modification Of The Rhizosphere
- 11. Future Developments In Soil Biochemistry

Soil Mineralogy

233

- A.D. Karathanasis, Department of Plant and Soil Sciences, University of Kentucky, Lexington, USA
- 1. Introduction
- 2. Classification And Distribution Of Minerals
 - 2.1. Sulfides
 - 2.2. Oxides And Hydroxides
 - 2.3. Halides, Sulfates And Carbonates
 - 2.4. Phosphates
 - 2.5. Silicates
 - 2.5.1. Primary Silicate Minerals
 - 2.5.2. Secondary Silicate Minerals
- 3. Surface Properties Of Minerals
 - 3.1. Permanent And Variable Charge
 - 3.2. Water Sorption Characteristics
 - 3.3. Dispersion-Flocculation Phenomena
 - 3.4. Sorption Characteristics
 - 3.5. Surface Area Properties
- 4. Mineral Characterization Methods
 - 4.1. X-Ray Diffraction
 - 4.2. Thermal Analysis
 - 4.3. Optical Microscopy
 - 4.4. Elemental Analysis
- 5. Mineral Weathering
 - 5.1. Primary And Secondary Minerals
 - 5.2. Weathering Pathways
 - 5.3. Mechanisms Of Mineral Weathering
- 6. Land Use And Environmental Implications

Soil Microscopy And Micromorphology

Ewart Adsil Fitzpatrick, School of Biological Science, University of Aberdeen, St. Machar Drive, Aberdeen, Scotland, UK.

- 1. Introduction
- 2. Techniques
- 3. Definitions, Concepts And Features
- 4. Mineral Soil Material
 - 4.1. Primary Minerals And Particle Size Classes
 - 4.2. Secondary Minerals And Weathering Products
- 5. Organic Soil Material
 - 5.1. Plant Material, Roots And Rhizomes

vi

- 5.2. Faunal Features
- 5.3. Microorganisms
- 6. Soil Micromorphological Mineral Features
 - 6.1. Fine Material And Matrix
 - 6.2. Domains
 - 6.3. Structure And Pores
 - 6.4. Coatings
 - 6.5. Impregnations, Concretions, Nodules And Concentrations
- 7. Applications
 - 7.1. Agriculture
 - 7.2. Archaeology
 - 7.3. Engineering
 - 7.4. Geomorphology
 - 7.5. Palaeo-Climatology
 - 7.6. Pedology And Palaeopedology
 - 7.7. Soil Microbiology
 - 7.8. Soil Zoology
- 8. Conclusions

Forest, Range and Wildland Soils

288

M. Derek Mackenzie, Department of Renewable Resources, University of Alberta, Edmonton, Canada

- 1. Introduction
- 2. Ecosystems And Soil Orders
 - 2.1. Forest Ecosystems
 - 2.1.1. Boreal Systems
 - 2.1.2. Sub-Alpine Forest Systems
 - 2.1.3. Lowland Conifer Forest Systems
 - 2.1.4. Mixed And Pure Deciduous Forest Systems
 - 2.1.5. Broad-Leaf Evergreen Forest Systems
 - 2.1.6. Temperate Rainforest Systems
 - 2.2. Range Ecosystems
 - 2.2.1. Grassland Systems
 - 2.2.2. Semi-Desert Woodland Systems
 - 2.3. Wildland Systems
 - 2.3.1. Sclerophyllous Shrubs
 - 2.3.2. Alpine And Tundra Systems
- 3. Natural Disturbances And Soils
 - 3.1. Effects Of Fire
 - 3.2. Effects Of Canopy Gaps
 - 3.3. Effects Of Permafrost And Frozen Soils
- 4. Soil Organic Matter
 - 4.1. Carbon
 - 4.2. Nitrogen
 - 4.2.1. Nitrogen Fixation And Mineralization
 - 4.2.2. Plant/Soil/Microbe Interactions
 - 4.2.3. Fire: A Special Case
- 5. Management Risk Factors
 - 5.1. Forest Harvesting And Silviculture
 - 5.2. Livestock Grazing

Index

309

317

About EOLSS

©Encyclopedia of Life Support Systems (EOLSS)