CONTENTS

VOLUME I

Fundamentals of Nuclear Energy
R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Historical Review
 1.1 Historical Discoveries
 1.2 The Atom
 1.2.1 Electron
 1.2.2 Proton
 1.2.3 Neutron
 1.2.4 Atom
 1.3 Radiation
 1.3.1 X-rays
 1.3.2 Radioactivity
 1.3.3 \(\beta\)-Particles
 1.3.4 \(\alpha\)-Particles
 1.3.5 \(\gamma\)-Radiation
 1.4 Nuclear Fission
 1.5 Nuclear Energy
 1.6 Nuclear Reactors
 1.6.1 Research Reactors
 1.6.2 Production Reactors
 1.6.3 Power Reactors

2. Scientific Recognition
 2.1 Key Researchers
 2.2 Significant Achievements
 2.2.1 Niels Bohr
 2.2.2 James Chadwick
 2.2.3 Enrico Fermi
 2.3 Nobel Prizes

3. Nuclear Reactor Development
 3.1 New Technology
 3.2 First Chain Reaction
 3.3 Atomic Bombs
 3.4 Power Producing Reactors

4. Nuclear Reactor Accidents
 4.1 Lessons from Accidents
 4.2 The Oklo Phenomenon
 4.3 Three Mile Island Accident
 4.4 Chernobyl Accident

5. Basic Nuclear Physics
 5.1 Atomic Components
 5.2 Atomic Mass and Energy
 5.3 Atomic Structure
 5.4 Radioactive Processes
 5.5 Binding Energy

6. Neutron Characteristics
 6.1 Neutron Production
 6.2 Neutron Flux and Energy
 6.3 Nuclear Cross Sections
 6.4 Reaction Rate
 6.5 Cross Section Variation
 6.6 Energy Release
6.7 Fission Characteristics
6.8 Delayed Neutrons
6.9 Fission Process Summary

7. Basic Reactor Theory
7.1 Basic Concepts
7.2 Fission Chain Reaction
7.3 Basic Reactor Core Design
7.4 Neutron Multiplication Factor
7.5 Reactor Size and Shape
7.6 Neutron Flux Variation
7.7 Reactor Power

8. Nuclear Reactor Operation
8.1 Neutron Lifetime
8.2 Source Multiplication
8.3 Approach to Critical
8.4 Effect on Reactor Operation
8.5 Fuel Burnup

Nuclear Physics
R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Fundamental Concepts
 1.1. Atomic Components
 1.2. Atomic Notation
 1.3. Atomic Mass Scale
 1.4. Mass-Energy Equivalence
 1.5. Avogadro's Number

2. Atomic Structure
 2.1. Atomic Dimensions
 2.2. Energy Levels
 2.3. Nuclear Structure

3. Radioactivity
 3.1. Radioactive Processes
 3.1.1. Alpha Decay
 3.1.2. Negative Beta Decay
 3.1.3. Positive Beta Decay
 3.1.4. Electron Capture
 3.1.5. Proton Emission
 3.1.6. Neutron Emission
 3.1.7. Neutron Decay
 3.2. Radioactive Decay
 3.3. Radioactive Chain
 3.4. Radioactive Build-up (Neutron Activation)
 3.5. Build-up and Decay

4. Binding Energy
 4.1. Definition of Binding Energy
 4.2. Plot of Binding Energy

Nuclear Interactions
R.A. Chaplin, University of New Brunswick, Canada

1. Neutron Interactions
 1.1. Neutron Production
 1.2. Elastic Scattering (Elastic Collision)
 1.3. Inelastic Scattering (Inelastic Collision)
 1.4. Radiative Capture
1.5. Nuclear Transmutation (Charged Particle Reaction)
1.6. Neutron Producing Reaction
1.7. Fission
1.8. Neutron Flux
1.9. Neutron Energy

2. Nuclear Cross Sections
2.1. Microscopic Cross Sections
2.2. Macroscopic Cross Sections
2.3. Number of Nuclei
2.4. Reaction Rate
2.5. Summary
 2.5.1. Macroscopic cross-section
 2.5.2. Neutron Flux
 2.5.3. Reaction Rate

3. Neutron Scattering and Capture
3.1. Neutron Attenuation
3.2. Mean Free Path
3.3. Scattering Characteristics
3.4. Absorption Characteristics
3.5. Radiative Capture Model
3.6. Cross Sections

4. Neutron Moderation
4.1. Neutron Energy Changes
4.2. Logarithmic Mean Energy Decrement
4.3. Definitions
 4.3.1. Mean Logarithmic Energy Decrement ξ
 4.3.2. Macroscopic Scattering Cross Section Σ_s
 4.3.3. Slowing Down Power
 4.3.4. Moderating Ratio

5. Fission and Fusion
5.1. Energy Release
5.2. Fission
5.3. Fission Characteristics
5.4. Fission Products
5.5. Neutron Energy Spectrum
5.6. Delayed Neutrons
5.7. Fission Process Summary
5.8. Charged Particles

Nuclear Reactor Theory
R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Neutron Diffusion Characteristics
 1.1. Basic Concepts
 1.2. Fick's Law
2. Neutron Diffusion Equation
 2.1. Neutron Balance
 2.2. Boundary Conditions
 2.3. Neutron Flux Variation
 2.4. Infinite Planar Source
 2.5. Point Source
 2.6. Diffusion Length
3. One Group Reactor Equation
 3.1. Development of Diffusion Equation
 3.2. One Group Critical Equation
4. Reactor Equation Applications
 4.1. Basic Application of Equation
4.2. Infinite Slab Reactor
4.3. Reactor Equation Solutions
 4.3.1. Rectangular Reactor
 4.3.2. Cylindrical Reactor
 4.3.3. Spherical Reactor
5. Neutron Flux and Power
 5.1. Neutron Flux Variation
 5.2. Spherical Reactor
 5.3. Maximum to Average Flux
 5.3.1. Rectangular Reactor
 5.3.2. Cylindrical Reactor
 5.3.3. Spherical Reactor

Nuclear Reactor Design
R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Basic Principles
 1.1. Fission Chain Reaction
 1.2. Neutron Absorption Characteristics
 1.3. Heat Removal
 1.4. Basic Reactor Core Design
2. Basic Theory
 2.1. Neutron Diffusion Equation
 2.2. One Group Reactor Equation
 2.3. Reactor Design Considerations
3. Neutron Energy Production
 3.1. Group Diffusion Method
 3.2. Two Group Calculations
4. Fast Fission and Resonance Absorption
 4.1. Neutron Multiplication Factor
 4.2. The Four Factor Formula
 4.3. The Six Factor Formula
 4.4. Neutron Cycle
5. Neutron Leakage
 5.1. Reactor Shapes
 5.2. Surface Effects
 5.3. Reactor Reflectors
 5.4. Neutron Flux
6. Output Enhancement
 6.1. Reactor Power
 6.2. Flux Flattening
 6.3. Flux Flattening in PWRs
 6.3.1. Reflector
 6.3.2. Fuel Loading and Management
 6.4. Flux Flattening in CANDU reactors
 6.4.1. Reflector
 6.4.2. Adjuster Rods
 6.4.3. Bi-directional Fuelling
 6.4.4. Differential Fuel Burnup
7. Reactor Configuration
 7.1. Homogeneous and Heterogeneous Arrangements
 7.2. Effect of Fuel Rods
 7.3. Effect of Control Rods
 7.4. Chemical Shim

Nuclear Reactor Kinetics
R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada
1. Reactor Kinetics
 1.1. Introduction
 1.2. Neutron Lifetime
 1.3. Reactor Power
 1.4. Basic Reactor Kinetics
 1.5. Reactor Period
 1.6. Doubling Time
 1.7. Reactor Kinetics with Delayed Neutrons
 1.8. Reactor Kinetics Numerical Model
 1.9. Negative Reactivity
2. Reactor Operation
 2.1. Shutdown Conditions
 2.1.1. Spontaneous Fission
 2.1.2. Decay of Delayed Neutron Precursors
 2.1.3. Photo-neutron Emission
 2.2. Source Multiplication
 2.3. Rate Log Power
 2.4. Power Transients
 2.5. Decay Heat
3. Critical Conditions
 3.1. General Considerations
 3.2. First Chain Reaction
 3.3. Atomic Bombs
 3.4. Power Producing Reactors
 3.5. Approach to Critical
4. Nuclear Reactor Startup
 4.1. Reactivity Changes and Power Measurement
 4.2. Approach to Criticality

Reactivity Changes
R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Introduction
 1.1. Effect on Reactor Operation
2. Fission Product Effects
 2.1. Magnitude of Effects
 2.2. Xenon Transients
 2.3. Xenon Reactivity Transients
 2.4. Xenon Oscillations
 2.5. Samarium Build-Up
3. Fuel Effects
 3.1. Fuel Burnup
4. Temperature Effects
 4.1. Coefficients of Reactivity
 4.2. Doppler Broadening
 4.3. Neutron Spectrum Hardening
 4.4. Density Change
 4.5. Void Formation
 4.6. Reactivity Changes
 4.7. Power Coefficient

Nuclear Power Plants
R. A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Introduction
 1.1. General Structure
1.2. Demonstration and Prototype Reactors

2. Reactor Types
 2.1. Reactor Development
 2.2. Commercial Reactors in Service
 2.3. Representative Reactors

3. Design Considerations
 3.1. Reactor Size
 3.2. Reactor Core Design
 3.3. Turbine Generator Design
 3.4. Operational Constraints
 3.5. Grid System Requirements
 3.6. Construction Duration

4. Thermodynamic Cycle
 4.1. Carnot Cycle
 4.2. Rankine Cycle
 4.3. Brayton Cycle
 4.4. General Principles

5. Nuclear Principles
 5.1. Fission Energy
 5.2. Nuclear Reactor Principles
 5.3. Fuel Burnup

6. Safety and Licensing
 6.1. Radiation Hazards
 6.2. Risk Assessment
 6.3. Licensing Principles

7. Nuclear Fuel
 7.1. Fuel Characteristics
 7.2. Nuclear Waste
 7.3. Fuel Utilization

8. Environmental Aspects
 8.1. Uranium Mining
 8.2. Nuclear Plant Effluents
 8.3. Thermal Discharge
 8.4. Carbon Dioxide Emissions
 8.5. Nuclear Fuel

9. New Developments
 9.1. General Direction
 9.2. Current New Developments
 9.2.1. European Pressurized Water Reactor (EPR)
 9.2.2. Advanced Passive Pressurized Water Reactors (AP 600 and AP 1000)
 9.2.3. System 80+ Pressurized Water Reactor
 9.2.4. Advanced Pressurized Water Reactor (APWR)
 9.2.5. Advanced Boiling Water Reactor (ABWR)
 9.2.6. The Economic Simplified Boiling Water Reactor (ESBWR)
 9.2.7. The Advanced CANDU Reactor (ACR)
 9.2.8. The mPower Reactor
 9.3. Long Term New Developments
 9.3.1. The Iris Reactor
 9.3.2. The NuScale Reactor
 9.3.3. The Pebble Bed Modular Reactor PBMR
 9.3.4. The Gas Turbine Modular Helium Reactor (GT-MHR)
 9.3.5. The Antares High Temperature Reactor (HTR)
 9.4. New Small Portable Reactors
 9.4.1. The Hyperion Power Module
 9.4.2. The Super-Safe Small and Simple (4S) Reactor

10. Nuclear Fusion
 10.1. Fusion Energy
 10.2. Theoretical Aspects
10.3. Reactor Structure
10.4. The International Thermonuclear Experimental Reactor (ITER)

Pressurized Water Reactors

J. Pongpuak,
Department of Chemical Engineering, University of New Brunswick, Canada

1. Introduction
 1.1. General Information
2. General Configuration
 2.1. Western Pressurized Water Reactor PWR
 2.2. Soviet Pressurized Water Reactor VVER
 2.3. Major Differences between Soviet VVERs and Western PWRs
3. Core Arrangement
 3.1. Reactor Vessel
 3.2. Moderator and Coolant
 3.3. Reactor Fuel Arrangement
 3.4. Control Rod Arrangement
 3.5. General Technical Data
4. Fuel Characteristics and Management
 4.1. Fuel Characteristics
 4.2. Fuel Management
 4.3. Refueling
 4.4. Long-Term Reactivity Control
 4.4.1. Control Rod Motion
 4.4.2. Soluble poisons
 4.4.3. Burnable poisons
 4.5. Chemical Shim
 4.6. Fuel Technical Data
5. Heat Transport
 5.1. The Reactor Coolant System
 5.2. Steam Generator
 5.3. Reactor Coolant Pump
 5.4. Pressurizer
6. Steam Cycle
 6.1. Secondary System
 6.2. Steam Generator
 6.2.1. Horizontal Steam Generators
 6.2.2. The U-tube Steam Generator (UTSG)
 6.2.3. The Once-Through Steam Generator (OTSG)
 6.3. The Saturated Steam Turbine Cycle
7. Operational and Safety Aspects
 7.1. Plant Control
 7.2. The VVER: Three Generations of Light Water Reactors, Upgraded Over Time
 7.2.1. First Generation VVERs
 7.2.2. Second-Generation VVERs
 7.2.3. Third-Generation VVERs
 7.2.4. VVER-1000 Derivatives

Boiling Water Reactors

R.A. Chaplin,
Department of Chemical Engineering, University of New Brunswick, Canada

1. Introduction
 1.1. General Information
2. General Configuration
 2.1. Reactor Arrangement
Pressurised Heavy Water Reactors
R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Introduction
2. General Configuration
 2.1. Plant Arrangement
 2.2. Coolant Circuit
3. Core Arrangement
 3.1. Fuel Channels
 3.2. Control Devices
 3.2.1. Liquid Zone Control Absorbers
 3.2.2. Mechanical Rod Control Absorbers
 3.2.3. Mechanical Rod Adjusters
 3.2.4. Mechanical Rod Shutoff Absorbers
 3.2.5. Liquid Poison Injection System
4. Fuel Characteristics and Management
 4.1. Fuel Bundles
 4.2. Refueling
 4.3. Fuel Management
5. Heat Transport
 5.1. Primary Circuit
 5.2. Fuel Channel Conditions
 5.3. Steam Generator Conditions
 5.4. Thermosyphoning
6. Steam Cycle
 6.1. Heat Balance
 6.2. Steam System
 6.3. Steam Bypass System
7. Operational and Safety Aspects
 7.1. Plant Control
 7.2. Power Density
8. Safeguard and Future Prospects
 8.1. Engineered Safeguards
Heavy Water Light Water Reactors

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1. Introduction
 1.1. General
 1.2. Global Description
 1.2.1. The Winfrith SGHWR Reactor
 1.2.2. The Gentilly CANDU-BLW Reactor
 1.2.3. The Fugen ATR Reactor

2. General Configuration
 2.1. General Arrangement
 2.2. Moderator and Coolant
 2.2.1. The Moderator
 2.2.2. The Coolant
 2.3. The Fuel
 2.3.1. The Winfrith SGHWR Reactor
 2.3.2. The Gentilly CANDU-BLW Reactor
 2.3.3. The Fugen ATR Reactor

3. Core Arrangement
 3.1. Reactor Vessel
 3.1.1. The Winfrith SGHWR Reactor
 3.1.2. The Gentilly CANDU-BLW Reactor
 3.1.3. The Fugen-ATR Reactor
 3.2. Steam Drum
 3.3. Overall Performance Parameters

4. Fuel Characteristics and Management
 4.1. Long-term Reactivity Control
 4.2. Chemical Shim
 4.3. Fuel Configuration and Cladding
 4.3.1. The Winfrith SGHWR Reactor
 4.3.2. The Gentilly CANDU-BLW Reactor
 4.3.3. The Fugen ATR Reactor
 4.4. Refueling Management
 4.4.1. The Winfrith SGHWR Reactor
 4.4.2. The Gentilly CANDU-BLW Reactor
 4.4.3. The Fugen ATR Reactor
 4.5. Fuel Technical Data
 4.5.1. The Winfrith SGHWR Reactor
 4.5.2. The Gentilly CANDU-BLW Reactor
 4.5.3. The Fugen ATR Reactor

5. Heat Transport
 5.1. Thermal Hydraulics and Steam Production
 5.2. Coolant Circuit and Coolant Flow
 5.2.1. The Winfrith SGHWR Reactor
 5.2.2. The Gentilly CANDU-BLW Reactor
 5.2.3. The Fugen ATR Reactor

6. Steam Cycle
 6.1. Steam Drums and Steam Flow
 6.1.1. The Winfrith SGHWR Reactor
 6.1.2. The Gentilly CANDU-BLW Reactor
 6.1.3. The Fugen ATR Reactor
7. Operational and Safety Aspects
 7.1. Reactivity Effects
 7.2. Short-term Reactivity Control
 7.2.1. The Winfrith SGHWR Reactor
 7.2.2. The Gentilly CANDU-BLW Reactor
 7.2.3. The Fugen ATR Reactor
 7.3. Control System Design and Operation
 7.3.1. The Winfrith SGHWR Reactor
 7.3.2. The Gentilly CANDU-BLW Reactor
 7.3.3. The Fugen ATR Reactor

8. Engineered Safeguards
 8.1. Radiation Survey
 8.1.1. The Winfrith SGHWR Reactor
 8.1.2. The Gentilly CANDU-BLW Reactor
 8.2. Accident Mitigation
 8.2.1. The Winfrith SGHWR Reactor
 8.2.2. The Fugen ATR Reactor
 8.3. Passive Safety Features
 8.3.1. The Fugen ATR Reactor

9. Conclusion

Index

Light Water Graphite Reactors

R.A. Chaplin, *Department of Chemical Engineering, University of New Brunswick, Canada*

1. Introduction
2. General Configuration
3. Core Arrangement
 - 3.1. Core Structure
 - 3.2. Fuel
 - 3.3. Coolant
 - 3.4. Reactor Vessel
4. Fuel Characteristics and Management
 - 4.1. Fuel Pellets
 - 4.2. Fuel Cladding and Configuration
 - 4.3. Long Term Reactivity Control
 - 4.4. Refueling Equipment and Capability
5. Heat Transport
 - 5.1. Power Density and Heat Flux
 - 5.2. Coolant Circuit and Coolant Flow
6. Steam Cycle
7. Operational and Safety Aspects
 - 7.1. Short Term Reactivity Control
 - 7.2. Reactivity Characteristics
8. Engineered Safeguards and Safety Aspects
 - 8.1. Engineered Safeguards
 - 8.2. Operational Safety
 - 8.3. Comparison with other Reactors
 - 8.4. The Chernobyl Accident

High Temperature Gas Cooled Reactors

R.A. Chaplin, *Department of Chemical Engineering, University of New Brunswick, Canada*

1. Introduction
 - 1.1. Thermodynamic Cycle
 - 1.2. High Temperature Requirements
 - 1.3. Historical Background
 - 1.4. The Dragon Reactor
 - 1.5. The Peach Bottom Reactor
 - 1.6. Fort Saint Vrain Reactor
 - 1.7. The Large HTGR
2. General Configuration
 - 2.1. Design Concept
 - 2.2. Plant Layout
3. Core Arrangement
 - 3.1. Reactor Core
 - 3.2. Prestressed Concrete Reactor Vessel
4. Fuel Characteristics and Management
 - 4.1. Fuel Particles
1. General Description
 1.1. Passive Heat Removal
 1.2. The Fuel
 1.3. On-line Fueling
 1.4. The Direct Cycle

2. Technical Description
 2.1. Principles of the Direct Cycle
 2.1.1. Brayton Cycle Description
 2.2. RPV and Core Internals
 2.2.1. Reactor Core
 2.2.2. Core Internals and RPV
 2.2.3. Control Systems
 2.3. Power Conversion Unit
 2.3.1. System Overview
 2.3.2. Brayton Cycle Components
 2.3.3. Main Power System Heat Exchangers
 2.4. Power Control
 2.4.1. Load Following
 2.4.2. Inventory Control System

3. Fuel Handling and Storage System
 3.1. Overview
 3.2. Components and Function
 3.3. Sphere Storage
 3.4. Sphere Circulation

4. Plant Layout and Equipment Arrangements
 4.1. Plant Layout
 4.2. Water Cooling Systems
 4.3. Reactor Cavity Cooling System
 4.4. Pressure Relief System
 4.4.1. Overview
4.4.2. Functions
4.4.3. Layout
4.4.4. Operation
4.5. Reactor Control
5. Safety Design Specification
5.1. Fuel
5.2. Heat Production
5.3. Heat Removal
5.3.1. Core Structures Design
5.3.2. Reactor Cavity Cooling System
5.4. Protection against Chemical Attack
5.5. Containment of Radioactive Materials
5.5.1. Conservative Design
5.5.2. Personnel Protection
5.6. Safety Analysis
6. Discussion

Radioactive Wastes, Origins, Classification and Management
John K. Sutherland, Fredericton, New Brunswick, Canada

1. Radioactivity and Radioactive Wastes
 1.1. Sources of Radioactive Waste
 1.1.1. Medical and Industrial Radionuclides and Wastes
 1.1.2. Reactor Wastes
 1.2. Radiation Accidents and Exposures to Workers and the General Public
 1.3. Protection of Workers and the Public
2. Categories Of Radioactive Wastes
 2.1. Low (and Intermediate) Level Wastes (LILW)
 2.2. Intermediate Level Wastes (ILW)
 2.3. High Level Wastes (HLW)
 2.4. Transuranic (TU) or Alpha Wastes
3. Radioactive waste management and disposal options
 3.1. Hospital and Reactor Wastes
 3.2. Transportation Regulations and Radiation Licenses
 3.3. Radioactive Waste Management
 3.3.1. Initial and Short-Term Waste Management
 3.3.2. Deep Geological Disposal
 3.4. Alternative Disposal Processes
 3.4.1. Deep Sea Disposal
 3.4.2. Transmutation
 3.4.3. Other methods
 3.4.4. Private and International Repositories

Nuclear Reactor Overview and Reactor Cycles
John K. Sutherland, Fredericton, New Brunswick, Canada

1. Nuclear Reactors and an Overview of Nuclear History
 1.1. World Reactors Summary
 1.2. Nuclear History Milestones
2. Nuclear Reactions
 2.1. Radioactive decay
 2.2. Spontaneous fission
 2.3. Induced Fission
 2.3.1. Neutron Sources
 2.3.2. Neutron Interactions and Losses
3. Nuclear Fuels, Reactors and Nuclear Reactor Development
3.1. Nuclear Fuels
 3.1.1. Fissile Nuclides
 3.1.2. Fertile Nuclides

3.2. Early Reactors
 3.2.1. The Sun
 3.2.2. The Oklo Reactor
 3.2.3. The Chicago Pile (CP-1)
 3.2.4. Military, Naval, Research, Breeder, and Transitional Reactors

4. Commercial Reactor Types
 4.1. Main Operating Reactors
 4.1.1. PWR
 4.1.2. BWR
 4.1.3. PHWR
 4.1.4. GCR
 4.1.5. LWGR
 4.1.6. Breeder Reactors
 4.2. Advanced and Future Reactors
 4.2.1. Fast Breeder Reactor (FBR)
 4.2.2. Accelerator-Driven System (ADS)
 4.2.3. Fusion Reactor

5. Reactor Cycles
 5.1. The Closed Nuclear Cycle
 5.2. The Open Nuclear Fuel Cycle
 5.3. The Fast Breeder Reactor (FBR) and Fuel Recycling

The Nuclear Reactor Closed Cycle
John K. Sutherland, Fredericton, New Brunswick, Canada

1. The Closed Nuclear Cycle
 1.1. Introduction
2. Uranium Mining, Processing, Refining
 2.1. Ore processing, Concentration and Refining
3. Conversion to UF6
4. Enrichment
5. Depleted Uranium
6. Fuel Fabrication
7. Reactor Operation, Maintenance Wastes, and Spent Fuel
 7.1. Maintenance Wastes
 7.2. Spent Fuel
 7.3. Fission, Activation and Trans-Uranium Nuclides
 7.3.1. Fission Nuclides
 7.3.2. Activation Radionuclides
 7.3.3. Transuranium Nuclides
8. Spent Fuel Interim Storage, Prior to Reprocessing or Disposal
 8.1. Disposal
 8.2. Reprocessing
 8.3. Dry Storage of Spent Fuel
9. Fuel Reprocessing, Fuel Re-cycling and Advanced Reactors
 9.1. Fuel reprocessing
 9.2. Fuel re-cycling
 9.3. Reprocessing and the Closed Fuel Cycle
 9.4. Fuel Recycling
 9.5. Advanced Reactors (The Fast Breeder Reactor)
Safety of Boiling Water Reactors

Javier Ortiz-Villafuerte, Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, 52045, México.
Yassin A. Hassan, Department of Nuclear Engineering, Texas A&M University, College Station, USA

1. Introduction
2. Nuclear reactor designs
3. Nuclear reactor safety design
4. Power Peaking Factors
5. BWR Core Thermal Limits
 5.1. The Linear Heat Generation Rate Thermal Limit
 5.2. Boiling Heat Transfer in a Nuclear Reactor Core
 5.3. The Minimum Critical Power Ratio Thermal Limit
6. Nuclear Power Plant Security
7. Next Generation Reactor Designs

Supercritical Water-Cooled Nuclear Reactors: Review and Status

R.B. Duffey and I.L. Pioro, Chalk River Laboratories, Atomic Energy of Canada Limited (AECL), Chalk River, ON, Canada

1. Introduction
2. Survey of Concepts of Nuclear Reactors at Supercritical Pressures
 2.1. General Considerations
 2.2. Design Considerations
3. Supercritical Water-Cooled CANDU Reactor Concept
 3.1. General Design
 3.2. Preliminary Calculations of Heat Transfer at SCW CANDU Operating Conditions

The Gas-Turbine Modular Helium Reactor

M. P. LaBar, A. S. Shenoy, W. A. Simon and E. M. Campbell, General Atomics, San Diego, California, USA
Y. A. Hassan, Texas A&M University, USA

1. Introduction
2. GT-MHR Design Objectives
3. GT-MHR Design Description
 3.1. Fuel
 3.2. Reactor
 3.3. Power Conversion System
4. GT-MHR Safety
5. GT-MHR Economic Competitiveness
6. GT-MHR Environmental Benefits
7. GT-MHR Proliferation Resistance
8. Hydrogen Production Using the MHR
9. Development Pathway
10. Conclusions

Application of Risk Assessment to Nuclear Power Plants

Ernie Kee, Consulting Engineer: Risk Management, STPNOG Inc., Bay City Texas, USA.

1. Risk
 1.1. Purpose of PRA and an Example
 1.2. Analysis of the Tank Rupture
 1.3. Predicting the Tank Rupture
2. Use of Data
3. Results
4. Data
 4.1. Conditional Probability
 4.2. Bayes' Theorem
 4.3. Application of Bayes' Theorem
 4.4. Data Uncertainty
 4.5. Initiating Event Frequency
 4.6. Component Failure Rate
 4.7. Maintenance Outage
 4.8. Human Error Rate
 4.9. Common Cause
 4.10. Dependent Data
5. Data Update

Production and Recycling Resources for Nuclear Fission

Jean A. Vergnes, Institut Universitaire Int. de l'Eau, Universite d'Aix-Marseille, France

1. Introduction
2. Recycling of Initial U235 in the PWRs
3. Recycling Pu in Uranium Support Fuels
 3.1. Fissile Core Regeneration Factor
 3.2. Regeneration Factor of Fertile Blankets
 3.3. An Example of a Fast Reactor Multi-recycling Plutonium on a Uranium support, the European Fast Reactor (noted EFR)
 3.4. Savings in Uranium Purchases arising from Multi-recycling of Pu in an Incinerator
 3.4.1. Savings in Uranium Purchases arising from Multi-recycling of Pu in a PWR
 3.4.2. Savings in Uranium Purchases arising from Multi-recycling ph Pu in an Incinerator FR
 3.5. Savings in Uranium Purchases arising from Pu Multi-recycling in a Self-generating and Breeder FR
 3.6. Influence of Regeneration Gains
4. Uranium Recycling in Thorium Support Fuels
 4.1. U233 Fast Breeder Reactor
 4.2. U233 Self-generating Reactor
 4.3. Influence of Regeneration Gains
5. Conclusion

Index

About EOLSS