INTERACTIONS: ENERGY/ENVIRONMENT

Editor Jose’ Goldemberg
CONTENTS

Preface xi

Interactions: Energy/Environment 1
Jose Goldemberg, University of Sao Paulo, Brazil

1. Introduction
2. The Major Environmental Problems
 2.1. Urban Air Pollution
 2.2. Indoor Air Pollution
 2.3. Acid rain
 2.4. Greenhouse Warming and Climate Change
3. The Major Causes of Environmental Problems
 3.1. Electricity Production
 3.2. Transportation
 3.3. Industry
4. Conclusions

Land Disturbance and the Environmental Pollution from Oil - and Gas - Well Drilling and Extraction, with Special Reference to Naturally Occurring Radioactive Materials 18
David A. Bradley, University of Exeter, UK

1. Introduction: The Issues
2. NORM in the oil and gas industry
3. Mechanisms of Enhancement of NORM
4. The hazards of alpha active materials
5. Prevailing levels of NORM and control of risk
6. Naturally existing levels
7. Disposal options
8. Radiation protection philosophy and legislation
9. Authorised disposal
10. Identification of the potential environmental pathways to man
11. The clean-up of contaminated sites
12. Laboratory evaluations
13. Conclusions

Land Disturbance and Reclamation of Peat Extraction 39
Abdul Rashid Ahmed, University of Malaya, Malaysia

1. Introduction
2. What is Peat?
3. Factors Contributing to Peat Formation
 3.1. Formation of Fen and Raised Bog
 3.2. The Formation of Blanket Bog
 3.3. The Structure of Bog
4. World Peatland Distribution
5. The Uses of Peat
 5.1. Peat as Low-grade Fuel
 5.2. Peat as a Chemical Source
6. Peat Extraction and Harvesting
 6.1. Impacts on the Environment Due to Peat Extraction and Harvesting
7. Reclamation of Peatland
 7.1. Reclamation Approaches
 7.1.1. Restoration of Site Hydrology
Environmental Effects of Fossil Fuel Combustion

Andrzej Grzegorz Chmielewski, Institute Nuclear Chemistry and Technology, Poland

1. Fossil Fuel Sources
2. Energy Demand and Air Pollution
3. Combustion and Pollutants Formation
 3.1. Formation of Sulfur Oxide
 3.2. Formation of Nitrogen Oxides
 3.3. Emission of Other Pollutants
4. Gross Emission of Pollutants
5. Pollutants in the Atmosphere
6. Pollutant Transformation in the Atmosphere
7. Flue Gas Treatment

Environmental Effects of Suspended and Toxic Materials from Coal and Peat Combustion

Andrzej Grzegorz Chmielewski, Institute Nuclear Chemistry and Technology, Poland

1. The Atmosphere and its Role
2. The Effect of Pollutants on Human Health and the Environment
3. Fly Ash
4. Carbon Monoxide (CO)
5. Sulfur Dioxide (SO2)
6. Nitrogen Oxides (NOx)
7. Halogens
8. Soil Degradation induced by Atmospheric Precipitation of Pollutants

Environmental Effects of Toxic Materials from Oil and Gas Combustion

Joao Vicente de Assuncao, Sao Paulo University, Brazil

1. Introduction
2. Acid Deposition
3. Effects on Vegetation
 3.1. Sulfur Dioxide Effects
 3.2. Nitrogen Oxides, Ozone, and Peroxyacyl Nitrate (PAN) Effects
 3.3. Effects of Metals
4. Effects on Visibility and Turbidity of the Atmosphere
 4.1. Effect on Visibility
 4.2. Turbidity
 4.3. Atmospheric Haze
5. Effects on Materials
6. Other Effects on Animals and Aquatic Life

Environmental Significance of Toxic Trace Elements from Fossil Fuel Combustion

Wandereley de Lima, Institute of Energetic and Nuclear Research, Brazil
Dora de Castro Rubio Poli, Institute of Energetic and Nuclear Research, Brazil

1. Basic Concepts
 1.1. Air Pollution
 1.2. Criteria and Non-Criteria
 1.3. Emissions
2. The Epidemiological Model
3. Toxic Trace Elements from Fossil Fuel Combustion
4. Environmental Behavior of Metal Pollutants
 4.1. Atmospheric Aerosol Particles
 4.2. Aqueous and Marine Environments
 4.3. Accumulation of Heavy Metals in Marine Invertebrates
 4.4. Heavy Metal ions in Soils
 4.5. Methylation of Heavy Metals in the Environment
 4.6. The Uptake of Metals by Plants
5. Toxic Effects of Heavy Metals
6. Environmental Impact of Coal Combustion
7. The Environmental Significance of Toxic Trace Elements
5.3.1. Normal Operations
5.3.2. Accidental Conditions
6. Nuclear Fuel Reprocessing
7. Concluding Remarks

Environmental Effects of Nuclear Fuel Processing. Refining: From the Yellow Cake to the Fuel Element. 168
Alcídio Abrão, Instituto de Pesquisas Energéticas e Nucleares (IPEN), S. Paulo, Brazil

1. Refining: From the Yellowcake to the Fuel Element
 1.1. Introduction: Living in a Radioactive World
 1.2. Carbon-14, Potassium-40, Tritium, Rubidium-87, and Radon
 1.3. Radioactive Products in the Soil and in the Atmosphere
 1.4. Radiation Types and Radiation Dose
 1.5. The Curie (Ci) and the Becquerel (Bq)
2. Nuclear Power
 2.1. Is Nuclear Power Necessary?
 2.2. Fertile and Fissile Material
 2.3. Uranium, Radioactive, and Depleted Uranium
 2.4. Uranium in Nature
3. The Problem of Energy Supply
 3.1. Nuclear Power Plants
 3.2. Nuclear Reactor Fuel
 4.1. Uranium Resource Categories
 4.2. Uranium Supply, Mining, and Pollution
 4.3. Restoration of Uranium Solution Mining Deposits
5. The Refining Processes and Uranium Products
 5.1. Purification of Uranium with TBP
 5.2. The Production of Uranium Trioxide
 5.3. Uranium Tetrafluoride
 5.4. Uranium Metal
 5.5. Uranium Hexafluoride
6. Radiation and Safety
 6.1. UF₆ Radiation and Safety
 6.2. Fluorine and Hydrogen Fluoride: Uses and Safety Aspects
 6.3. HF and Uranium Fluorides Safety
7. Uranium Enrichment
 7.1. Methods of Enrichment
 7.2. Criticality
8. Depleted Uranium
 8.1. Depleted Uranium Health Protection Practices
 8.2. Safety Hazards Involved in Industrial Usage of Depleted Uranium
 8.3. Depleted UF₆ as a Source of Fluorine
9. Economical Recovery of Non-Radioactive Products
 9.1. Recovery of Hydrogen Fluoride from Uranium Hexafluoride and Tetrafluoride
 9.2. Nitric Acid Recovery
10. Wastes and Disposal
 10.1. Radiotoxicity in the Environment
 10.2. Waste Treatment for Mining Operations
 10.3. Mill Tailings
 10.4. Disposal Radioactive Wastes
 10.5. Waste Recycling to other Industries
11. Health and Environmental Considerations
 11.1. Minimizing the Overall Environmental Impact of Fuel Cycle Activities
 11.2. Ecological Aspect
 11.3. Remediating the Soil of Old Closed Uranium Mines
11.4. Safety, Health, and Environmental Implications
11.5. Environment: Coal, Uranium, Thorium, and Lead
12. Treatment of Liquid Effluents
 12.1. Removal of Radium
 12.2. Effluent Treatment and Tailings Disposal
 12.3. Required Raffinate Treatment
13. Solid Effluents
14. Gaseous Effluents
 14.1. Airborne Radioactive Effluent
 14.2. Uranium Hexafluoride Fabrication: Treatment of Effluents
15. Principles of Radiation Protection and Safety
 15.1. Radiation Protection
 15.2. Nuclear Safety and Radiological Safety Precautions
16. Recovery of Uranium
 16.1. Recovery of Uranium from Magnesium Fluoride Slag
 16.2. Enriched Uranium Recycle
17. Public Acceptance
18. Conclusion

Environmental Effects of Nuclear Power Generation 203
Anselmo Salles Paschoa, Pontificia Universidade Catolica do Rio de Janeiro, Brazil

1. Introduction
2. Nuclear Energy
3. Nuclear Reactors and Power Generation
4. Environmental Effects
5. Concluding Remarks

Environmental Effects of Nuclear Fuel Reprocessing 218
Bertha Floh de Araujo, Institute for Energetic and Nuclear Research (IPEN), Brazil

1. Introduction
 1.1. Nuclear Energy and the Nuclear Fuel Cycle
 1.1.1. The Fission Process
 1.1.2. Reactor Types
 1.1.3. Nuclear Fuel Cycle Description
2. Reprocessing
 2.1. Decay
 2.2. Build-up of Radioactive Nuclides
 2.2.1. Build-up of Fission Products
 2.2.2. Build-up of Heavy Nuclides
3. The Chemistry of Fuel Reprocessing
 3.1. The PUREX Process
 3.2. New Realities: Plutonium Recycle
4. Reprocessing plants and the environment
5. Plutonium in the environment
 5.1. Environmental Sources of Plutonium
 5.2. Distribution of Plutonium in the Environment
 5.3. Behaviour of Plutonium in the Environment
 5.4. Human Effects

Environmental Effects of Hydropower Plants Including Those Using Thermal, Tidal, and Wave Power 242
Jonathan Isaac Kleinman, Vermont Energy Investment Corporation, USA
Patrick McCully, International Rivers Network, USA
1. Introduction
2. Riverine Hydropower
 2.1. History and Technology
 2.2. Energy and Environment Interactions
 2.2.1. Hydrological Impacts
 2.2.2. Water Chemistry Impacts
 2.2.3. Sedimentological and Morphological Impacts
 2.2.4. Habitat Fragmentation Impacts
 2.3. Other Related Impacts
 2.3.1. Construction and Regional Development Impacts
 2.3.2. Public Health Impacts
 2.3.3. Induced Seismicity
 2.4. Socioeconomic Factors
 2.4.1. Social Impacts
 2.4.2. Cost Effectiveness of Hydroelectricity
 2.5. Riverine and Other Forms of Hydropower
3. Tidal Hydropower
 3.1. History and Technology
 3.2. Energy and Environment Interactions
 3.3. Socioeconomic Factors
4. Wave Hydropower
 4.1. History and Technology
 4.2. Energy and Environment Interactions
 4.3. Socioeconomic Factors
5. Ocean Thermal Hydropower
 5.1. History and Technology
 5.2. Energy and Environment Interactions
 5.3. Socioeconomic Factors
6. Electricity Demand, Hydropower, and Environmental Protection
7. Conclusions
Environmental Effects of Geothermal Power

Sue J. Goff, Los Alamos National Laboratory, USA
Paul Brophy, EGS, Inc, USA
Fraser Goff, Los Alamos National Laboratory, USA

1. Geothermal Systems
 1.1. Introduction and History
 1.2. Resource Locations and Characteristics
 1.2.1. Young Igneous Systems
 1.2.2. Tectonic Systems
 1.2.3. Geopressured Systems
 1.3. Outline of Environmental Issues

2. Air Quality
 2.1. Introduction
 2.2. Air Quality of Geothermal Plants Compared with Fossil Fuel Power Plants
 2.3. Hydrogen Sulfide Emissions
 2.3.1. Points of Release
 2.3.2. Control Technologies
 2.4. Other Emissions
 2.5. Mitigation and Monitoring

3. Water Quality
 3.1. Introduction
 3.2. Brines
 3.3. Impacts on Natural Thermal Features
 3.4. Mitigation and Monitoring

4. Geologic Hazards
 4.1. Introduction
 4.2. Volcanic Hazards
 4.3. Hydrothermal Explosions
 4.4. Landslides and Soil Erosion
 4.5. Subsidence
 4.6. Earthquakes
 4.7. Mitigation and Monitoring

5. Wastes
 5.1. Solid Wastes
 5.2. Liquid Wastes

6. Noise
 6.1. Mitigation and Monitoring

7. Biological Resources
 7.1. Vegetation
 7.2. Wildlife
 7.3. Mitigation and Monitoring

8. Land Use
 8.1. Issues
8.2. Mitigation
9. Future Research and Development Directions
 9.1. Environmental Costs
 9.2. International Cooperative Research Effort

Environmental Effects of Energy from Biomass and Municipal Wastes
Usha K. Rao, United Nations Development Programme (UNDP), India
N. H. Ravindranath, Indian Institute of Science, India

1. Introduction
2. Environmental Impacts of Current Uses of Biomass and Municipal Wastes
 2.1. Traditional Biomass Use as Energy
 2.2. Deforestation and Land Degradation
 2.2.1. Loss of Soil Nutrients
 2.2.2. GHG Emissions
 2.2.3. Health Hazards
 2.3. Environmental Effects of Municipal Wastes
 2.3.1. Anaerobic Decomposition of Solid Wastes
 2.3.2. Incineration
3. Environmental Effects of Technological Options
 3.1. Biomass Production for Energy
 3.1.1. Loss of Biodiversity
 3.1.2. Soil Fertility
 3.1.3. Water Pollution
 3.1.4. Pests and Diseases
 3.1.5. Long-Term Sustainability of Biomass Production
 3.1.6. Land Use and Land Reclamation
 3.1.7. Carbon Sequestration Through Biomass Production for Energy
 3.2. Biomass Conversion Technologies
 3.3. Biological Conversion
 3.3.1. Biomethanation/Biogas
 3.4. Bio-Chemical Conversion
 3.4.1. Biomass to Liquid Fuels
 3.4.2. Gasification
 3.4.3. Environmental Impacts of Modern Bioenergy Technologies
 3.5. Direct Combustion
 3.6. Municipal Solid Wastes
 3.6.1. Incineration
 3.6.2. Biomethanation

Fossil Fuel Energy Impacts on Health
Helena Ribeiro, Universidade de Sao Paulo, Brazil

1. Introduction
2. Air Pollution and Respiratory Diseases
 2.1. First Studies
 2.2. Conceptual Framework
 2.2.1. Toxicologic Studies
 2.2.2. Epidemiologic Studies
 2.3. Brief Bibliographic Review
3. Main Health Effects
 3.1. Chronic Obstructive Pulmonary Diseases
 3.2. Health Effects of Particles
 3.3. Health Effects of Sulfur Dioxide
 3.4. Health Effects of Nitrogen Oxides
 3.5. Health Effects of Diesel
3.6. Health Effects of Ozone
3.7. Health Effects of Carbon Monoxide
3.8. Health Effects of Lead

4. Conclusions

Nuclear Energy Impacts on Health
Michael H. McGovern, Center for Verification Research, USA
Jaya Tiwari, Old Dominion University, USA

1. Nuclear Energy and Health: Categories of Risk
2. Why Does This Issue Matter: Important Trends and Issues
3. Sources of Health Impacts: Normal Operations and Accidents
4. Controlling Health Effects: National and International Regimes
5. Conclusion

About EOLSS