CONTENTS

VOLUME I

Organic and Bio-molecular Chemistry 1
Francesco Nicotra, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy

1. Introduction
2. The Carbon Atom
 2.1. The Carbon Atom Building Blocks: Hybridizations
 2.2. Single and Multiple Bonds
3. Structure of organic compounds
 3.1. Graphical Representation of the Structures of Organic Compounds
 3.2. Different Shapes that a Molecule can assume: Conformations
 3.3. Asymmetry of some Organic Molecules: Chirality and Stereoisomers
4. Classification of organic compounds, the functional groups
 4.1. Alkanes
 4.2. Alkenes
 4.3. Alkynes
 4.4. Aromatic Hydrocarbons
 4.5. Haloalkanes
 4.6. Alcohols
 4.7. Thiols
 4.8. Ethers
 4.9. Thioethers, Disulfides and Trisulfides
 4.10. Amines
 4.11. Aldehydes and Ketones
 4.12. Carboxylic Acids, Esters and Amides
5. Attractive interactions and molecular recognition
6. Reactivity of organic compounds
7. Molecules of life
 7.1. Carbohydrates
 7.2. Amino Acids, Peptides and Proteins
 7.3. Nucleic Acids
 7.4. Lipids
 7.4.1. Fats, Oils and Waxes
 7.4.2. Phospholipids and Glycolipids
 7.4.3. Terpenoids
 7.4.4. Fat-soluble Vitamins
 7.4.5. Steroids
8. Organic compounds in the market
 8.1. Dyes
 8.2. Compounds for Health Care
 8.3. Compounds for Food Industry
 8.4. Polymers
9. Isolation, purification and analysis of organic compounds
10. Conclusions

Organic Substances and Structures, Nomenclature of Organic Compounds 56
Luigi A. Agrofoglio, ICOA UMR CNRS 6005, University of Orleans – France
Patrick Rollin, ICOA UMR CNRS 6005, University of Orleans – France

1. Type(s) of Nomenclature Operations
 1.1. Substitutive Operation
 1.2. Replacement Operation
1.3. Additive Operation
1.4. Conjunctive Operation
1.5. Subtractive Operation
1.6. Ring Formation or Cleavage
2. General Rules
 2.1. Capitalized and Italic
 2.2. Numbers of Position
 2.3. Punctuation
3. Parent Name
 3.1. Alkanes
 3.2. Unsaturated Alkanes
 3.3. Substituent Prefix Names Derived from Parent Hydrides
4. Functional Groups
5. Specific Classes of Compounds
 5.1. Organometallic Compounds
 5.2. Halogen Compounds
 5.3. Nitrogen Compounds
 5.3.1. Amines and Imines
 5.3.2. Amides and Imides
 5.3.3. Nitrile, Isocyanide and their Derivatives
 5.3.4. Nitro and Nitroso Compounds
 5.3.5. Azo, azoxy, diazo, and related compounds
 5.3.6. Azides
 5.4. Hydroxy Compounds and Analogues
 5.4.1. Alcohols and Phenols
 5.4.2. Substituent Prefixes Derived from Alcohols, Phenols, and their Analogues
 5.4.3. Salts
 5.4.4. Ethers
 5.4.5. Cyclic Ethers
 5.4.6. Aldehydes
 5.4.7. Ketones
 5.4.8. Ketenes
 5.4.9. Acetals, Hemiacetals, Acylals, and their Analogues
 5.5. Nitrogenous Derivatives of Carbonyl Compounds
 5.6. Acids and Derivatives
6. Numbering of Some Heterocyclic Rings
7. Numbering of Multiple Ring Systems
8. Name Construction
 8.1. Rules
 8.2. Examples

Stereochemistry
Franco Cozzi, *Dipartimento di Chimica Organica e Industriale, Universita' degli Studi di Milano, Italy*

1. Introduction
2. Symmetry
 2.1. Molecular Models and Symmetry Evaluation
 2.2. Symmetry Elements and Symmetry Operations
 2.3. Point Groups
3. Chirality
 3.1. Pairwise Relationships between Isomeric Molecules
 3.2. Topicity Relationships among Atoms and Groups of Atoms in Molecules
 3.3. Chirotopicity
4. Stereogenicity
 4.1. On the Distinction between Chirality and Stereogenicity
5. Conformation and configuration
ORGANIC AND BIOMOLECULAR CHEMISTRY

5.1. Conformation
5.2. Configuration
5.3. Some Considerations on the Use of the Terms Conformation and Configuration

6. Configuration descriptors

7. Dependence of the properties of chiral molecules on the enantiomeric composition
7.1. Racemic Forms and Enantiomerically Pure Compounds
7.2. Optical Activity
7.3. Racemization

8. How to obtain stereoisomerically pure compounds
8.1. Separations
8.2. Stereoselective Transformations
 8.2.1. Reactions Involving Chiral Non-racemic Substrates and Achiral Reagents
 8.2.2. Reactions Involving Achiral Substrates and Chiral Non-racemic Reagents
 8.2.3. Reactions Involving Chiral Substrates and Chiral Reagents
 8.2.3.1. Kinetic Resolution
 8.2.3.2. Multiple Stereoselection

Sythetic Organic Chemistry
Francesco Nicotra, Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy

1. Introduction
 1.1. Definition and Story of Synthetic Organic Chemistry
 1.2. Target Oriented Synthesis
 1.3. Method Oriented Synthesis
2. Synthetic Strategy
 2.1. Retrosynthetic Analysis
 2.2. Disconnections
 2.2.1. One Functional Group Disconnections
 2.2.2. Two Functional Group Disconnections
 2.2.2.1. Disconnections of 1,2 Dioxygenated Structures
 2.2.2.2. Disconnections of 1,3 Dioxygenated Structures
 2.2.2.3. Disconnections of 1,4 Dioxygenated Structures
 2.2.2.4. Disconnections of 1,5 Dioxygenated Structures
 2.2.2.5. Disconnections of 1,6 Dioxygenated Structures
3. Protection and Deprotection
 3.1. Temporary and Permanent Protective Groups
 3.2. Protection of Alcohols
 3.2.1. Esters
 3.2.2. Ethers
 3.2.3. Silyl Ethers
 3.2.4. Acetals
 3.2.5. Protection of Diols
 3.3. Protection of Amines
 3.3.1. Carbamates
 3.3.2. Amides
 3.3.3. Azides
 3.4. Protection of Aldehydes and Ketones
 3.5. Protection of Carboxylic acids
4. Control of Stereochemistry
 4.1. The Chiral Pool Approach
 4.2. Stereoselective Transformation
 4.2.1. Chiral Auxiliary
 4.2.2. Chiral Catalyst
 4.2.3. Enzymes as Chiral Catalysts
5. The Convergent Strategy
6. Solid Phase Synthesis
ORGANIC AND BIOMOLECULAR CHEMISTRY

Organic Chemical Reactions

Alessandro Abbotto, Department of Materials Science, University of Milano-Bicocca, Italy

1. Introduction
2. The Organic Reaction
 2.1. Chemical Reaction Notation: Equilibrium Arrows, Reactants and Products
 2.3. Thermodynamics and Kinetics: Reaction Equilibrium and Reaction Rate
 2.4. Ionic Reactions
 2.4.1. Nucleophiles and Electrophiles
 2.5. Acids and Bases
 2.5.1. Brønsted Theory
 2.5.2. Lewis Theory
 2.5.3. Hard and Soft Acids and Bases
 2.6. Reactive Intermediates
 2.7. Product Selectivity
3. Classification of Organic Reactions
 3.1. Addition
 3.1.1. Electrophilic Addition
 3.1.2. Nucleophilic Addition
 3.2. Elimination
 3.3. Substitution
 3.3.1. Aliphatic Nucleophilic Substitution
 3.3.2. Aromatic Electrophilic Substitution
 3.3.3. Aromatic Nucleophilic Substitution
 3.4. Oxidation and Reduction
 3.5. Rearrangements
 3.6. Pericyclic Reactions

Organic Chemistry and Biological Systems - Biochemistry

Marina Lotti, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy

1. From Molecules to Living Systems: Complexity is Obtained from Simple Building Blocks
2. Amino Acids and Proteins
 2.1. Proteogenic Amino Acids
 2.2. Non Proteinogenic Amino Acids
 2.3. Amino Acid Polymers: Proteins. Their Structure and Function
 2.3.1. Proteins Folding and Structure
 2.3.2. Proteins Function and Regulation
3. Nucleotides and nucleic acids: information, energy transport, catalysis
 3.1. Chemical Structures of Nucleotides
3.2. Nucleotide Polymers: RNA and DNA
 3.2.1. The Flow of Genetic Information
 3.2.2. DNA: Storage and Transmission of Information
 3.2.3. RNA: Expression of Information and Catalysis
3.3. Nucleotides Derivatives and Coenzymes

 4.1. Monosaccharides and Polysaccharides
 4.2. Structural Support and Intracellular Storage of Fuel for Cell Metabolism
 4.3. Effects of Glycans on Glycoproteins Properties
 4.4. Sugars as Sources of Energy and Metabolic Intermediates

5. Lipids: Energy, Membranes, Protein Targeting and Signal Transduction
 5.1. Structures of Lipids Common in Biochemistry
 5.2. Lipids in Cell Metabolism
 5.3. Lipids as the Constituents of Cell Membranes
 5.4. Lipid Tails Target Proteins to Membranes

Chemistry of Natural Compounds
Laura Cipolla, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy

1. Introduction
2. Chemistry of natural products: a general perspective
 2.1. Alkylation Reactions
 2.1.1. Nucleophilic Substitution
 2.1.2. Electrophilic Addition
 2.2. Wagner-Meerwein Rearrangements
 2.3. Aldol and Claisen Reactions
 2.4. Imine Formation and the Mannich Reaction
 2.5. Transamination Reactions
 2.6. Decarboxylation reactions
 2.6.1. Decarboxylation of α-amino Acids
 2.6.2. Decarboxylation of β-keto Acids
 2.6.3. Decarboxylation of α-keto Acids
 2.7. Oxidations and Reductions
 2.7.1. Dehydrogenases
 2.7.2. Oxidases
 2.7.3. Oxygenases
 2.7.4. Amine Oxidases
 2.8. Carbohydrate Processing Enzymes: Glycosidases and Glycosyl Transferases
3. Lipids
 3.1. Hydrolyzable lipids
 3.1.1. Waxes
 3.1.2. Triglycerides
 3.1.3. Phospholipids
 3.2. Non-hydrolyzable lipids
 3.2.1. Fat-soluble Vitamins
 3.2.2. Eicosanoids
 3.2.3. Terpenoids
 3.2.4. Steroids
4. Amino Acids, Peptides and Proteins
 4.1. Amino Acids: Structural Features and Acid-base Behavior
 4.2. Amino Acid Biosynthesis
 4.3. Peptides and Proteins
 4.3.1. Ribosomal Biosynthesis of Peptides and Proteins
 4.3.2. Nonribosomal Biosynthesis of Peptides and Proteins
 4.4. Relevant Peptides and Proteins
 4.4.1. Hormones
 4.4.2. Interferons
4.4.3. Opioid Peptides
4.4.4. Enzymes

5. Nucleosides, nucleotides and nucleic acids
 5.1. Purine Nucleotides Biosynthesis
 5.2. Pyrimidine Nucleotides Biosynthesis

6. Carbohydrates
 6.1. Monosaccharides
 6.2. Disaccharides, Oligosaccharides, Polysaccharides and Carbohydrate Processing Enzymes
 6.3. Glycoconjugates
 6.3.1. Glycoproteins
 6.3.2. Glycolipids
Chemistry of Nutraceutics, Flavors, Dyes and Additives
Barbara La Ferla, University of Milano Bicocca, Milan, Italy

1. Introduction
2. Flavors
 2.1. Natural Flavors
 2.1.1. Flavors derived from Lipid Catabolism
 2.1.2. Flavors of the Terpene Family
 2.1.3. Flavors derived from Amino Acids Catabolism
 2.2. Artificial Flavors
3. Dyes
 3.1. Natural Colorings
 3.1.1. Carotenoids
 3.1.2. Anthocyanins
 3.1.3. Chlorophyll
 3.1.4. Betalaines
 3.1.5. Carminic Acid and Curcumin
 3.2. Synthetic Dyes
4. Additives
 4.1. Sweeteners or Edulcorants
 4.1.1. Nutritive Sweeteners
 4.1.2. Non-nutritive Sweeteners
 4.2. Preservatives
 4.2.1. Main Food Spoilage
 4.2.2. Antioxidants
 4.2.3. Antimicrobials
 4.3. Emulsifiers and Stabilizers
5. Nutraceutics
 5.1. Flavonoids
 5.2. Polyunsaturated Fatty Acids (PUFAs)
 5.3. Amino Acids
 5.4. Vitamins

Computational Organic Chemistry
Giuseppe Zampella, Department of Biotechnology and Biosciences. University of Milano-Bicocca, Italy
Luca De Gioia, Department of Biotechnology and Biosciences. University of Milano-Bicocca, Italy

1. Introduction
2. Computational Approaches based on Classical Physics: Molecular Mechanics and Molecular Dynamics
 2.1. Molecular Mechanics
 2.2. Molecular Dynamics
3. Molecular Orbitals Theory and its Hartree-Fock Implementation
 3.1. Post Hartree-Fock Methods
 3.1.1. Configuration Interaction Theory (CI)
 3.1.2. Perturbation Methods
4. Density functional theory (DFT)
 4.1. Kohn-Sham (KS) Implementation
5. Semiempirical Methods

Organic Photochemistry
Antonio Papagni, Department of Materials Science, University of Milano-Bicocca, Milano, Italy

1. Introduction
2. Photo-physics: Interaction of Light with Matter and Photostimulated Processes
 2.1. Interaction with Atoms
2.2. Interaction with Molecules
2.3. Photo-physical Processes
3. Photo-chemistry
3.1. Photo-chemical Processes
3.2. Organic Photostimulated Reactions
 3.2.1. Dissociation into Radicals
 3.2.2. Dissociation into Ions or "Internal" Electron Transfer
 3.2.3. Intramolecular rearrangement
 3.2.4. Photo-isomerization
 3.2.5. Hydrogen Atom Abstraction
 3.2.6. Photo-dimerization or Photo-addition
 3.2.7. Photo-sensitized Reactions
 3.2.8. Photo-ionization Reactions
3.3. Miscellaneous
 3.3.1. Photo-reactivity of Aromatic Compounds
 3.3.2. Photo-chemistry of Diazo- and Azido Compounds
 3.3.3. Photo-cleavable Protecting Groups
 3.3.4. Photo-polimerization
 3.3.5. Chemo-luminescence
4. Technical and Experimental Aspects
5. Concluding Remarks

Organometallic Chemistry
Sandro Cacchi, Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università degli Studi "La Sapienza", P. le A. Moro 5, 00185 Rome, Italy

1. Introduction
2. Organometallic Compounds of the Group IA and IIA
 2.1. Organolithium Compounds
 2.1.1. Preparation of Organolithium Compounds
 2.1.2. Reactions of Organolithium Compounds
 2.1.2.1. Reactions with Carbon Acids
 2.1.2.2. Reactions with Alkylating Agents
 2.1.2.3. Reactions with Carbonyl Compounds
 2.2. Organomagnesium Compounds
 2.2.1. Preparation of Organomagnesium Compounds
 2.2.2. Reactions of Organomagnesium Compounds
 2.2.2.1. Formation of Carbon-Carbon Bonds
 2.2.2.2. Formation of Carbon-Hydrogen Bonds
 2.2.2.3. Formation of Carbon-Heteroatom Bonds
 2.2.2.3.1. Formation of Carbon-Nitrogen Bonds
 2.2.2.3.2. Formation of Carbon-Phosphorus Bonds
 2.2.2.3.3. Formation of Carbon-Oxygen Bonds
 2.2.2.3.4. Formation of Carbon-Sulfur Bonds
 2.2.2.3.5. Formation of carbon-halogen bonds
 2.3. Organozinc Compounds
 2.3.1. Preparation of Organozinc Compounds
 2.3.2. Reactions of Organozinc Compounds
 2.3.2.1. Reactions with Carbonyl Compounds
 2.3.2.2. Reactions with Alkenes
3. Transition Metal-based Organometallic Compounds
 3.1. Organocopper Compounds
 3.1.1. Preparation of Organocuprate Reagents
 3.1.2. Reactions of Organocuprate Reagents
 3.1.2.1. Reactions with Alkylating Agents
 3.1.2.2. Reactions with Carbonyl Compounds
 3.1.2.3. Reactions with α,β-unsaturated Carbonyl Compounds
3.1.3. Copper-Catalyzed Reactions

3.2. Palladium-catalyzed Reactions

3.2.1. Pd(II) and Pd(0)

3.2.2. Pd(II)-catalyzed Reactions

3.2.2.1. Pd(II)-catalyzed Reaction of Alkenes

3.2.2.2. Pd(II)-catalyzed Reaction of Alkynes

3.2.2.3. Pd(II)-catalyzed Reaction of Arenes

3.2.3. Pd(0)-catalyzed Reactions

3.2.3.1. The Heck Reaction

3.2.3.2. The Tsuji-Trost Reaction

3.2.3.3. Carbonylation Reactions

3.2.3.4. The Cross-coupling Reactions

3.2.3.4.1. The Negishi Cross-coupling

3.2.3.4.2. The Stille Cross-coupling

3.2.3.4.3. The Suzuki Cross-coupling

3.2.3.4.4. The Sonogashira Cross-coupling

3.2.3.5. The Reaction of Aryl Halides (or Pseudo Halides) with Non-organometallic Nucleophiles

4. Organoboranes

4.1. Substitution of the C-B Bond with a C-O Bond

4.2. Substitution of the C-B Bond with a C-N Bond

4.3. Substitution of the C-B Bond with a C-halogen Bond

4.4. Substitution of the C-B Bond with a C-C Bond

4.5. Substitution of the C-B Bond with a C-H Bond
1. Introduction
2. Nuclear Magnetic Resonance
 2.1. The Resonance Phenomenon
 2.2. Chemical Shift
 2.3. Chemical Equivalence and Signal Intensity
 2.4. A Simple 1H-NMR Spectrum
 2.5. Coupling Constant
 2.6. Dependence of the Proton Coupling Constant on the Molecular Structure
 2.7. More Complex Spectra
 2.8. A Real Life 1H-NMR Spectrum
 2.9. 2D Homonuclear Spectra
 2.10. 13C Spectra
 2.11. 2D Heteronuclear Spectra
3. Mass Spectrometry
 3.1. Brief Outline of the Technique
 3.1.1. Common Ionization Techniques
 3.1.2. Sensitivity and Resolution
 3.1.3. Ion analysis
 3.2. Mass Spectrum
 3.3. Isotope Content
 3.4. Fragmentation Pattern

Index 371

About EOLSS 377