CONTENTS

VOLUME I

Radiochemistry and Nuclear Chemistry

1. Introduction
2. The beginnings of RC&NC and the timeline of nuclear science
3. Nuclides and nuclei - isotopes, isobars, isotones, and isomers
 3.1. The Building Blocks of Atoms and Nuclei
 3.2. Nuclides - Atomic Species Determined by Their Nuclei
 3.3. Nuclidic Notation with Examples
4. Nuclear starter - concepts, quantities and units
 4.1. Mass and Energy Basic Quantities and Units
 4.1.1. The Electron Volt - the Energy Unit in Nuclear Science
 4.1.2. The Nuclidic Mass and the Unified Atomic Mass Unit
 4.1.3. Quantities Characterizing Stability and Instability
 4.2. Radioactivity-related Concepts
 4.2.1. Decay Modes and Radiations
 4.2.2. Characterization of Radioactive Samples Decay Rate and Count Rate
 4.2.3. Half-life, Mean Life, Decay Constant and the Exponential Law of Decay
 4.2.4. Decay Chain, Equilibrium, Branching, and Decay Schemes
 4.2.5. Radionuclides on Earth
 4.3. Introduction to Nuclear Reactions
 4.3.1. Types of Nuclear Reactions
 4.3.2. Radioactive Decay vs. Chemical and Nuclear Reactions
 4.3.3. Reactions Induced by Neutrons and Positive Ions
5. Kinetics of radioactive decay and activation
 5.1. Radioactive Decay and Growth
 5.2. Decay Following Activation
 5.3. Parallel Decay Processes
6. Aftereffects of radioactive decay and nuclear reactions
 6.1. Recoil
 6.2. Inner Bremsstrahlung, X-rays and Auger Effect
7. Interaction of nuclear radiations with matter
 7.1. Interactions of Alpha Radiation (Heavy Ions)
 7.2. Interactions of Beta Radiation (Light Ionizing Particles)
 7.3. Interactions of Gamma Radiation (High-energy Photons)
 7.4. Interactions of Neutrons
8. Conclusions

Isotope Effects, Isotope Separation and Isotope Fractionation

1. Introduction
2. Isotope Effects
 2.1. Mechanical Effects
 2.2. Isotope Effects in Spectroscopy
 2.3. Isotope Effects in Chemical Equilibria
 2.3.1. Isotope Exchange Equilibria
 2.4. Isotope Effects on Phase Equilibria
 2.4.1. Vapor Pressure Isotope Effects
 2.4.2. Isotope Effects on other Phase Equilibria
 2.5. Isotope Effects on some Physicochemical Properties
2.6. Kinetic Isotope Effects
 2.6.1. Classification and Determination of Kinetic Isotope Effects
 2.6.2. Theory of Kinetic Isotope Effects
2.7. Mass-independent Isotope Effects
2.8. Biochemical and Biological Isotope Effects
 2.8.1. Physiological Effects of Heavy Water
 2.8.2. Isotope Fractionation in Biological Processes
3. Isotope Separation
 3.1. Isotope Separation Processes
4. Isotopic Fractionation in Nature
 4.1. Variations in the Isotope Ratio of some Light Elements in Nature
 4.1.1. Hydrogen
 4.1.2. Carbon
 4.1.3. Oxygen
 4.2. Stable Isotopes in Food and Drink Authentication
5. Conclusions

Radiometric Dating and Tracing
Wolfgang Siebel, Tubingen University, Germany
Peter van den Haute, Ghent University, Belgium

1. Introduction
2. Major concerns
3. Limitations
4. Radioactive decay
5. Chemical separation techniques
6. Mass spectrometry
 6.1. Thermal Ionization Mass Spectrometry (TIMS)
 6.2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
 6.3. Secondary Ion Mass Spectrometry (SIMS)
 6.4. Sensitive High Resolution Ion Microprobe (SHRIMP)
 6.5. Accelerator Mass Spectrometry (AMS)
 6.6. Gas-source Mass Spectrometry
7. Methods and applications
 7.1. Rb-Sr and Sm-Nd
 7.1.1. Evolution of the Crust-mantle System
 7.1.2. Past Human and Animal Migration
 7.2. K-Ar, Ar-Ar
 7.3. U-Pb
 7.4. Lu-Hf
 7.5. Re-Os
 7.6. Thermo-chronometry
 7.7. Cosmogenic Nuclides
 7.7.1. Sediment Recycling
 7.7.2. Geo-morphological Processes
 7.7.3. Paleo-erosion Rates
 7.8. Disequilibrium Dating
 7.8.1. U-Th Disequilibrium in Young Volcanic Rocks
 7.8.2. U-Th Disequilibrium in Carbonates
 7.9. Extinct Radionuclides
 7.10. Radiation-damage Dating Methods
 7.10.1. Fission-track Dating
 7.10.2. The Luminescence Method
8. Conclusions
Radiochemical Techniques
Zoltan Nemeth, University of Pannonia, Hungary
Kálmán Varga, University of Pannonia, Hungary

1. Introduction
2. Characterization of the radioactive targets and sources
3. Separation techniques of radioactive elements
4. Activity measurements
 4.1. Main Aspects in Sample Preparation for Activity Measurements
 4.2. Useful Sample-mounting Techniques
 4.3. Choice of Counting Conditions
 4.4. Methods for Determining Absolute Decay Rates
5. Decontamination
 5.1. Measuring the Extent of Contamination-Decontamination
 5.2. An Overview of the Experimental Decontamination Techniques
 5.2.1. Physical Decontamination Methods
 5.2.2. Chemical Decontamination
 5.2.3. Electrochemical Decontamination
 5.2.4. Other Decontamination Techniques
 5.3. Selection Criteria for the Decontamination Method
 5.4. Contamination, Decontamination in Nuclear Power Plants
 5.4.1. Sources and Significance of the Radioactive Contamination at Nuclear Reactors
 5.4.2. Radioactive Contamination-Decontamination: General Consideration
 5.4.3. Decontamination Technologies used in Nuclear Power Plants
 5.4.4. Surface Chemical Effects of Chemical Decontamination Technologies A Case Study

Radionuclides in Chemical Research
Zoltan Homonnay, Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
Karoly Suvegh, Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary

1. Introduction
2. Neutron Activation Analysis
3. Radiotracers
 3.1. The Tracer Principle
 3.2. Selection of Radioactive Tracers
 3.3. Preparation and Acquisition of Radiotracers
 3.4. Application of Radiotracers
 3.4.1. Determination of the Mass of Mercury in Mercury Cathode Tanks
 3.4.2. Determination of Distribution Ratio
 3.4.3. Solubility
 3.4.4. Reaction rates and Mechanisms
 3.4.5. Surface and Phase Boundary Reactions
 3.4.6. Diffusion
 3.4.7. Isotope Dilution Analysis
 3.4.8. Volume of Water in the Human Body
 3.4.9. Radioimmunoassay
 3.4.10. Radiometric Titrations
 3.4.11. Positron Emission Tomography (PET)
 3.4.12. Miscellaneous Industrial Applications
4. Gamma Spectroscopy
 4.1. Basic Principles of Gamma Spectroscopy
 4.1.1. The Natural Line Width
 4.1.2. Other Modes for De-excitation
 4.2. The Spectrometer
 4.2.1. Detectors
4.2.2. The Electronics

4.3. Practical Aspects of Gamma Spectroscopy
 4.3.1. Energy Calibration of the Spectrometer
 4.3.2. Identification of Nuclides
 4.3.3. Efficiency
 4.3.4. Resolution
 4.3.5. Compton Background

4.4. Applications

5. X-ray Fluorescence Analysis
 5.1. Principles
 5.2. The Primary Source of Radiation
 5.3. Spectrometers
 5.3.1. Wavelength-dispersive Spectrometers
 5.3.2. Energy-dispersive Spectrometers
 5.3.3. Detectors
 5.4. Total Reflection Geometry
 5.5. XRF in Practice
 5.5.1. Calibration and Identification of X-ray Lines
 5.5.2. Attenuation of X-rays
 5.5.3. Matrix Effects
 5.5.4. Standards
 5.6. Applications

6. Conclusions
4.2. Instrumentation
4.3. Analysis of Characteristic X-rays
4.4. PIXE Imaging

5. Mössbauer Spectroscopy
5.1. The Ultimate Tool to Measure Energy with Ultra High Resolution: Gamma-rays
5.2. Recoil Energy and Recoilless Nuclear Resonance
5.3. The Mössbauer-Lamb Factor
5.4. Mössbauer Spectroscopy
5.5. Mössbauer Parameters and Hyperfine Interactions
 5.5.1. Isomer Shift
 5.5.2. Quadrupole Splitting
 5.5.3. Magnetic Splitting
5.6. Applications

6. Positron Annihilation Spectroscopies
6.1. About Annihilation
 6.2. Positron and Positronium in Materials
 6.2.1. Positron Sources
 6.2.2. The Slowing Down Process
 6.2.3. Positron States
 6.2.4. The Positronium Atom
6.3. Positron Spectroscopies
 6.3.1. Angular Correlation of Annihilation Radiation
 6.3.2. Doppler-broadening Spectroscopy
 6.3.3. Positron Lifetime Spectroscopy
 6.3.4. Variable Energy Positron Beams

7. Muon Spin Spectroscopies
5.5.2. Polymer Decomposition

5.6. Biopolymers
 5.6.1. DNA and its Constituents
 5.6.2. Polysaccharides
 5.6.3. Amino Acids, Peptides
 5.6.4. Lipids

6. Radiation Technology
 6.1. Characteristics of Radiation Technologies
 6.2. Synthesis
 6.3. Industrial Radiation Technologies
 6.3.1. Flue Gas Treatment
 6.3.2. Food Irradiation
 6.3.3. Sterilization
 6.3.4. Drinking and Wastewater Treatment

7. Hot Atom Chemistry
3.4.3. Adaptive Response
3.4.4. Gene Regulation

3.5. Biological Dosimetry
3.5.1. Lymphocyte Metaphase Chromosomes
3.5.2. Fluorescent in situ Hybridization (FISH) Technique
3.5.3. Lymphocyte Micronuclei
3.5.4. Premature Chromosome Condensation (PCC)

4. Radiation Protection
4.1. Objectives of Protection
4.1.1. International Institutes Involved in Regulatory Aspects
4.1.2. Principles of Protection
4.1.3. Reference Levels
4.1.4. Dose Limits
4.1.5. Dose Constraint
4.1.6. Changes in Dose Limitation
4.1.7. Optimization and the ALARA Principle
4.1.8. Infrastructure of Radiation Protection
4.1.9. Practice
4.1.10. Exemption
4.1.11. Intervention and Action
4.1.12. Factors to Reduce Exposure from External Sources
4.1.13. Categories of Exposures

4.2. Occupational Radiation Protection
4.2.1. Personnel Monitoring
4.2.2. Film Badge
4.2.3. Thermoluminescent Dosimeter
4.2.4. Radon Dosimeter
4.2.5. Personal Portable Dosimeter
4.2.6. Pocket Dosimeter
4.2.7. Whole Body Counter
4.2.8. Exposure of Workers
4.2.9. Caution Signs
4.2.10. Hand-Foot Contamination Monitor
4.2.11. Monitoring at Workplaces
4.2.12. Transportation of Radioactive Material

4.3. Medical Radiation Protection
4.3.1. Medical X-ray Imaging
4.3.2. Nuclear Medicine
4.3.3. Radiotherapy
4.3.4. Release of Patients Administered a Radiopharmaceutical
4.3.5. Guidance Level of Medical Exposure

4.4. Environmental Radiation Protection
4.4.1. Natural Sources
4.4.2. Artificial Sources

5. Risk Assessment
2.2. Productions Using Cyclotrons
 2.2.1. Types of Cyclotrons
 2.2.2. Targetry
 2.2.3. Cyclotron-produced Positron Emitters for PET Imaging
 2.2.4. Cyclotron-produced Photon Emitters for SPECT Imaging
 2.2.5. Cyclotron-produced Therapeutic Radionuclides

2.3. Productions Using Radionuclide Generator System
 2.3.1. Equations of Radioactive Decay and Growth
 2.3.2. Generator-produced Positron Emitters for PET
 2.3.3. Generator-produced Photon Emitters for SPECT
 2.3.4. Generator-produced Particle Emitters for ERT
 2.3.5. In vivo Generators

3. Radiopharmaceutical Chemistry for Non-invasive Molecular Imaging
 3.1. Carbon-11 Labeled Molecules
 3.1.1. Synthetic Pathways of 11C-labeling
 3.1.2. 11C-compounds for Drug Development
 3.1.3. 11C-radiopharmaceuticals for PET Imaging
 3.2. Fluorine-18 Labeled Molecules
 3.2.1. Synthetic Pathways of 18F-labeling
 3.2.2. Application of 18F-compounds
 3.3. Technetium-99m Labeled Molecules
 3.3.1. Synthetic Pathways of 99mTc-labeling
 3.3.2. Application of 99mTc-compounds

4. Radiopharmaceutical Chemistry for Endoradiotherapy
 4.1. Therapeutic Radionuclides
 4.1.1. β-particle Emitting Radionuclides
 4.1.2. α-particle Emitting Radionuclides
 4.1.3. Low-energy Electron Emitters
 4.2. Examples of Radiotherapeutics
 4.2.1. Microspheres, Particles, Radiocolloids
 4.2.2. Me^{3+} Ligand Complexes
 4.2.3. Peptides and Proteins Labeled via Bifunctional Chelating Agents

5. Conclusions
1. Introduction
2. Classification of Radioactive Wastes
 2.1. High-level Waste (HLW)
 2.2. Intermediate-level Waste (ILW)
 2.3. Low-level Waste (LLW)
3. Who is Responsible for Radioactive Wastes?
 3.1. Pertinent Legislation in the US Regarding Radioactive Wastes: An Example
4. Splitting the Atom for Energy
5. Status of Nuclear Power World-wide
 5.1. Commercial Nuclear Power Generation
6. Nature of HLW as a Function of Time
7. Fast Reactors
8. The Nuclear Fuel Cycle
 8.1. Options in the Fuel Cycle that Impact Waste Management
 8.1.1. Once-Through Fuel Option
 8.1.2. The Reprocessing Fuel Cycle (RFC)
 8.1.3. Advanced Fuel Cycle (AFC)
9. Important Characteristics of Actinides
10. Separations Technologies for the Nuclear Fuel Cycle
 10.1. PUREX Process
 10.2. DIAMEX Process
 10.3. TRUDEX Process
 10.4. TRAMEX Process
 10.5. TALSPEAK Process
 10.6. Stereospecific Extractants
 10.7. Non-aqueous Processes
 10.7.1. Volatility Processes
 10.7.2. Molten Salt Processes
 10.7.3. Electrochemical Separations using Non-Aqueous Processes
11. Advanced Fuel Cycle Concepts and Partitioning and Transmutation (P&T)
 11.1. Transmutation of Minor Actinides
 11.2. Transmutation of the Long-lived Fission Products
 11.3. Partitioning Schemes for the Minor Actinides and Long-lived Fission Products
12. Aqueous Chemical Processing
 12.1. Improved PUREX Process - Removal of Np, I, and Te
 12.2. UREX and UREX+ Processes
13. Non-Aqueous Chemical Processing
14. Transmutation Devices for the Advanced Fuel Cycle
15. Strategies for Implementation of an Advanced Fuel Cycle
16. Generation IV Nuclear Energy Systems
 16.2. The Advanced Fuel Cycle Initiative (AFCI)
 16.3. Areas of Scientific Concerns in the AFCI
17. Future of P&T

High-intensity Lasers in Nuclear Science

Joseph Magill, *European Commission, DG Joint Research Centre, Institute for Transuranium Elements, Germany*

1. Introduction
2. Laser induced Photo-Reactions and Photo-Fission
3. Laser induced heavy ion fusion
4. Sample preparation
5. Laser generation of protons and neutrons
6. Laser generation of positrons
7. Conclusions
Nuclear Forensics 305
Klaus Mayer, European Commission Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
Maria Wallenius, European Commission Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany

1. Introduction
2. General Approach
3. Analytical Methodology
 3.1. Classical Forensic Investigations
 3.2. Nuclear Forensic Investigations
 3.2.1. Radiometric Methods
 3.2.2. Mass Spectrometric Methods
 3.2.3. Microstructural Techniques
 3.2.4. Specific Developments
4. Data Interpretation
 4.1. Reference Data
 4.2. Reactor Type Determination (Pu Production)
 4.3. Geolocation
5. International Cooperation
6. Conclusions

Nuclear Processes in Nature 334
Zsolt Fülöp, ATOMKI (Institute for Nuclear Research), Debrecen, Hungary
Zoltán Elekes, ATOMKI (Institute for Nuclear Research), Debrecen, Hungary

1. Introduction
2. Terrestrial Nuclear Processes
 2.1. Geoneutrinos
 2.2. The Oklo Phenomenon
 2.3. Living on Radioactivity
3. Celestial Nuclear Processes
 3.1. The Gamma-sky
 3.1.1. Gamma-ray Bursts
 3.1.2. Gamma Rays from Cosmic Nuclei
 3.2. Nuclear Fingerprints of a Near-Earth Supernova
 3.3. Heavy-element Nucleosynthesis
 3.3.1. Neutron Capture Reactions
 3.3.2. Gamma Induced Reactions

Subatomic Particles, Nuclear Structure and Stability 357
Sandor Nagy, Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary

1. Introduction
2. Particles and Forces - the Standard Model in a Nutshell
 2.1. The Origin of Nuclear Force
 2.2. Classification of Particles and Forces
 2.3. The Color Charge
3. Characterization of the Atomic Nucleus
 3.1. Nuclear Radius and Mass Density
 3.2. Nuclear Spin, Electric and Magnetic Properties of Nuclei
 3.3. The One-nucleon Shell Model of the Nucleus
4. Systematics of Stable Elements, Nuclides and Nuclei
5. Mass and Energy
5.1. Criterion for Spontaneity: Q-value and Mass Excess - Application for Beta and Alpha decay
5.2. The Average Binding Energy Per Nucleon
5.3. The Weizsäcker Formula - Liquid-drop Explanation for SF
6. Towards Greater Stability - Radioactive Decay
 6.1. Radioactive Decay and the Chart of Nuclides
 6.2. Decay Modes Revisited
 6.2.1. More on Gamma Decay
 6.2.2. More on Spontaneous Fission
 6.2.3. Exotic and Rare Decay Modes

Index 407

About EOLSS 413