CONTENTS

VOLUME XI

Mangroves of the Reef Domain: A Case Study in Belize
Ilka C. Feller, Smithsonian Environmental Research Center, Smithsonian Institution, 647 Contees Wharf Rd., Edgewater MD 21037, USA
Klaus Ruetzler, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA

1. Introduction
 1.1. Mangroves: Definitions, Distribution, and Ecological and Economic Significance
 1.2. Threats to Mangroves
2. A Case Study in Belize
 2.1. Oceanic Mangrove Forests in the Reef Domain
 2.2. The Mesoamerican Barrier Reef
 2.3. Structure and Diversity of Mangrove Forests on Oceanic Islands
 2.4. Mangrove Island Communities
 2.4.1. Terrestrial Communities
 2.4.2. Marine Communities
 2.4.3. Prop Root Communities
 2.4.4. Benthic Communities
 2.4.5. Seagrass Communities
 2.4.6. Microbial Communities
3. Conclusions

Tropical Insect Diversity - How to Sample it
J. T. Longino, The Evergreen State College, Olympia, WA, USA

1. Introduction
 1.1. Why Sample Insects?
 1.2. ATBI versus ABTI
 1.3. The Taxonomic Impediment
 1.4. Favorite Taxa
 1.4.1. Butterflies
 1.4.2. Ants
 1.4.3. Dung Beetles
2. The Species x Sample Matrix
3. Sampling Methods
 3.1. Volumetric Methods
 3.1.1. Direct Visual Inspection of Samples
 3.1.2. Berlese Samples
 3.1.3. Winkler Samples
 3.1.4. Branch Bagging and Canopy Fogging
 3.2. Individual-based Hunting and Trapping Methods
 3.2.1. Aerial Netting, Sweeping, and Beating
 3.2.2. Malaise Traps and Flight Intercept Traps
 3.2.3. Pitfall Traps
 3.2.4. Attraction to Lights
 3.2.5. Baiting
4. Measuring Diversity
 4.1. Graphing Diversity
 4.2. Diversity Indices
 4.3. Species Area versus Local Community
 4.4. Pooled-Quadrat Plots
 4.5. Species Accumulation Curves

©Encyclopedia of Life Support Systems (EOLSS)
4.6. Species Density versus Species Richness
4.7. Rarefaction
4.8. Estimating Species Richness
 4.8.1. Extrapolating Species Accumulation Curves
 4.8.2. Fitting Parametric Models
 4.8.3. Non-Parametric Methods
4.9. Hyperdiverse Tropical Insects
4.10. Recommendations

The Impact of Forest Fragmentation on Populations of New World Primates 59
Stephen F. Ferrari, Department of Biology, Universidade Federal de Sergipe, So Cristvo Sergipe, Brazil

1. Introduction
2. New World Monkeys
3. Effects of Habitat Fragmentation
4. A Short History of Human Impact in the Neotropics
5. Diversity Patterns
6. Fragmentation and Conservation
7. The effects of anthropogenic habitat fragmentation
8. Conservation strategies
9. The Future

Life in the Treetops – A Concise Summary of Forest Canopy Ecology 83
Margaret D. Lowman, Professor of Biology and Environmental Studies, Director of Environmental Initiatives, New College of Florida, USA, Center for Canopy Ecology, Sarasota FL, USA

 1.1. Introduction.
 1.3. History of the Development of Advances in Canopy Research.
2. Canopy Access Techniques.
 2.1. Introduction.
 2.3. Long Term, Collaborative Canopy Research.
 2.4. Future Directions for Canopy Access.
 3.1. Sessile Organisms.
 3.2. Mobile Organisms.
 3.3. Canopy Processes and Interactions.
 3.4. Canopy Education Outreach.
4. Future Directions.
5. Conclusions.

Natural History of Amazon Fishes 113
Lucelia Nobre Carvalho and Jansen Zuanon, Coordenacao de Pesquisas em Biologia Aquatica, Instituto Nacional de Pesquisas da Amazônia, Brazil
Ivan Sazima, Departamento de Zoologia and Museu de Historia Natural, Universidade Estadual de Campinas, Brazil

1. Introduction
2. Main aquatic environments of the Amazon
3. Fish diversity and community structure
4. Time and space: activity periods, territoriality, and resource partitioning among fishes
5. Reproduction: different responses to environmental factors
6. Feeding tactics, trophic specializations, and ecological interactions

©Encyclopedia of Life Support Systems (EOLSS)
The danger of introducing bee species, A case study on Brazilian Tropical Savanna

Helena Maura Torezan Silingardi, InBio, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.

1. Introduction
2. Material and Methods
 2.1. The Field Area
 2.2. The Plant Species
 2.3. Floral Biology
 2.4. Reproductive Biology
 2.5. Floral Visitors
3. Results
 3.1. Floral Biology
 3.2. Reproductive Biology
 3.3. Floral Visitors
4. Discussion and Conclusions

Diversity of Tropical Spiders - Ground-Dwelling Species of Brazilian Savannas

Marina Farcic Mineo, Federal University of Uberlandia, Brazil
Kleber Del-Claro, Biology Institute, Federal University of Uberlandia, Brazil

1. Introduction
2. The Araneae order
3. The diversity of spiders
 3.1. Web-building Spiders
 3.1.1. Orb-weaving Spiders
 3.1.2. Tangle-web Weavers
 3.1.3. Sheet-web Weavers
 3.1.4. Funnel-web Weavers
 3.2. Non-web-building Spiders
 3.2.1. Jumping Spiders
 3.2.2. Cursorial Spiders
 3.2.3. Sit-and-wait Spiders
 3.3. Considerations
4. Ground-dwelling spiders of Brazilian savannas
 4.1. Ground-dwelling Spiders
 4.2. The Brazilian Savannas
 4.3. Methods
 4.4. Results and Discussion
5. Conclusion

Natural History and Social Behavior in Neotropical Pseudoscorpions

Everton Tizo-Pedroso, Universidade Federal de Uberlandia, Programa de Pos-graduacao em Ecologia e Conservacao de Recursos Naturais, CP 593, Cep 38400-902, Uberlandia, MG, Brasil.
Kleber Del-Claro, Universidade Federal de Uberlandia, Instituto de Biologia, CP 593, Cep 38400-902, Uberlandia, MG, Brasil.

1. Introduction
 1.1. What we know about the Order Pseudoscorpiones?
 1.2. Predatory Behavior and Feeding Habits
 1.3. Reproductive Behavior
1.4. Development, Life Cycle and Parental Care
1.5. Living Together
2. The Social Pseudoscorpions
 2.1. Distribution and Occurrence of the Social Pseudoscorpion Species
 2.2. Colony Structure, Growth and Division
 2.3. Forage and Feeding Habits of Social Pseudoscorpions
 2.4. Cohesion and Cooperation
 2.5. Parental Care
3. New Directions

Natural History of Tropical Parasitoid Wasps
M. O. Gonzaga, Instituto de Biologia, Universidade Federal de Uberlândia

1. What is a Parasitoid?
2. Life Histories
3. Host Location
4. Host Selection and Acceptance
5. Variation in Natural History and Study Cases
 5.1. Ichneumonidae and Braconidae
 5.2. Scelionidae
 5.3. Mutilidae
 5.4. Non-pollinating Fig Wasps
 5.5. Ampulicidae
6. Host behavior Manipulation

Index

About EOLSS