CONTENTS

VOLUME XIII

Nonlinear Output Regulation

Alberto Isidori, Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza" and Department of Systems Science and Mathematics, Washington University in St. Louis, Italy. Claudio De Persis, Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza", Italy.

- 1. The problem of output regulation
- 2. Output regulation in the case of full information
- 3. Output regulation in the case of error feedback
- 4. Structurally stable regulation

Nonlinear Zero Dynamics in Control Systems

Pramit Sarma, Technology Consultant - Advanced Process Control, Corporate Technology, Birla Management Corporation, Mumbai 400021, India. Bijnan Bandyopadhyay, Systems and Control Engineering, Indian Institute of Technology - Bombay, Mumbai 400 076, India

- 1. Introduction
- 2. Nonlinear Control System Paradigms
 - 2.1. Exact / Feedback Linearizing Control
 - 2.2. Backstepping Control
 - 2.3. Differentially Flat Control
 - 2.4. Variable Structure Control
- 3. Zero Dynamics in Control Systems
 - 3.1. Zero Dynamics in Linear Control Systems
 - 3.2. Zero Dynamics in Nonlinear Control Systems
- 4. Nonminimum Phase Control Systems: Difficulties and Partial Solutions
 - 4.1. Linear Nonminimum Phase Control Systems
 - 4.2. Nonlinear NMP Control Systems. Case 1: Restricted input-affine4.2.1. Nonlinear NMP Control Systems. Case 2: Semi-analytic input-affine
 - 4.3. Nonlinear NMP Control Systems. Case 3: Slightly NMP input-affine
 - 4.4. Nonlinear NMP Control Systems. Case 4: Differentially Flat Systems
- 5. Conclusion

Flatness Based Design

Ph. Martin, *Ecole des Mines de Paris*, CAS, Paris, France R. Murray, *California Institute of Technology*, CDS, Pasadena, USA P. Rouchon, *Ecole des Mines de Paris*, CAS, Paris, France

- 1. Introduction
- 2. Equivalence and flatness
 - 2.1. Control Systems as Infinite Dimensional Vector Fields
 - 2.2. Equivalence of Systems
 - 2.3. Differential Flatness
 - 2.4. Trajectory Generation
- 3. Feedback design with equivalence
 - 3.1. From Equivalence to Feedback
 - 3.2. Endogenous Feedback
 - 3.3. Tracking: Feedback Linearization
- 4. Checking flatness: an overview
 - 4.1. The General Problem

65

1

- 4.2. Known Results
- 5. Concluding Remarks

Lyapunov Design

Shuzhi Ge, Department of Electrical and Computer Engineering, The National University of Singapore, Singapore

- 1. Introduction
- 2. Control Lyapunov Function
- 3. Lyapunov Design via Lyapunov Equation
 - 3.1. Lyapunov Equation
 - 3.2. MRAC for Linear Time Invariant Systems
 - 3.3. MRAC for Nonlinear Systems
- 4. Lyapunov Design for Matched and Unmatched Uncertainties
 - 4.1. Lyapunov Design for Systems with Matched Uncertainties
 - 4.1.1. Lyapunov Redesign
 - 4.1.2. Adaptive Lyapunov Redesign
 - 4.1.3. Robust Lyapunov Redesign
 - 4.2. Backstepping Design for Systems with Unmatched Uncertainties
 - 4.2.1. Backstepping for Known Parameter Case
 - 4.2.2. Adaptive Backstepping for Unknown Parameter Case
 - 4.2.3. Adaptive Backstepping with Tuning Function
- 5. Property-based Lyapunov Design
 - 5.1. Physically Motivated Lyapunov Design
 - 5.2. Integral Lyapunov Function for Nonlinear Parameterizations
- 6. Design Flexibilities and Considerations
- 7. Conclusions

Sliding Mode Control

Vadim Utkin, The Ohio State University, Columbus, Ohio, USA

- 1. Introduction
- 2. Concept "Sliding Mode"
- 3. Sliding Mode Equations
- 4. Existence Conditions
- 5. Design Principles
- 6. Discrete-Time Sliding Mode Control
- 7. Chattering Problem
- 8. Induction Motor Control
- 9. Conclusion

Nonlinear Observers

A. J. Krener, University of California, Davis, CA, USA

- 1. Introduction
- 2. Observability
- 3. Construction of Observers by Linear Approximation
- 4. Construction of Observers by Error Linearization
- 5. High Gain Observers
- 6. Nonlinear Filtering
- 7. Minimum Energy and H^{∞} Estimation
- 8. Multiple Extended Kalman Filters
- 9. Conclusion

153

130

©Encyclopedia of Life Support Systems (EOLSS)

1. Introduction

- 2. The continuous-time extended Kalman filter
 - 2.1. State Estimation of Stochastically Excited Nonlinear Systems

State Reconstruction in Nonlinear Stochastic Systems by Extended Kalman Filter

R. Unbehauen, Friedrich Alexander University Erlangen-Nuremberg, Germany

- 2.1.1. Preparations
- 2.1.2. Design equations
- 2.1.3. Dynamics of the estimation error
- 2.1.4. Examples
- 2.2. State Estimation of Deterministic Nonlinear Systems
 - 2.2.1. Preparations
 - 2.2.2. Dynamics of the estimation error
 - 2.2.3. Examples
- 3. The discrete-time extended Kalman filter
 - 3.1. Preparations
 - 3.2. Design Equations
 - 3.3. Dynamics of the estimation error
 - 3.4. Examples

Passivity Based Control

Antonio Loria, CNRS, LSS-Supélec, Plateau de Moulon, 91192, Gif sur Yvette, France Henk Nijmeijer, Departments of Mech. Engg., Eindhoven Univ. of Technology, The Netherlands

- 1. Introduction
- 2. Passivity: mathematically speaking
- 2.1. In a General Input-Output Framework
- 3. Stability of passive systems
 - 3.1. L_2 -Stability
 - 3.2. From L₂-Stability to Lyapunov Stability
- 4. PBC of Euler-Lagrange systems
 - 4.1. Passivity of EL Systems
 - 4.2. PBC of EL Systems
 - 4.2.1. An Introductory Example
 - 4.2.2. Lyapunov Stability of the ES+DI Controllers
 - 4.3. EL Controllers
 - 4.4. Tracking a Time-varying Reference
- 5. Epilogue

Control of Chaos and Bifurcations

Alexander L. Fradkov, Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, RUSSIA

Guanrong Chen, Center for Chaos and Complex Networks, City University of Hong Kong, CHINA

- 1. Introduction
- 2. Features of Chaos
- 3. Methods of Chaos Control
 - 3.1. Feedforward Control by Periodic Signal
 - 3.2. Linearization of Poincaré Map (OGY Method)
 - 3.3. Delayed Feedback (Pyragas Method)
 - 3.4. Linear and Nonlinear Control
 - 3.5. Robust, Adaptive and Intelligent Control
 - 3.6. Generation of Chaos (Chaotization)
- 4. Bifurcations Control
 - 4.1. Feedback Control
 - 4.2. Washout-Filter-Aided Control

iii

230

206

- 4.3. Normal-Form-Based Control
- 4.4. Frequency-Domain Method
- 5. Applications in Science
 - 5.1. Physics
 - 5.2. Mechanics
 - 5.3. Chemistry
 - 5.4. Economy
 - 5.5. Medicine
- 6. Applications in Technology
 - 6.1. Mechanical Engineering
 - 6.2. Electrical and Power Engineering
 - 6.3. Communication and Information
 - 6.4. Chemical and Material Engineering
 - 6.5. Miscellaneous Applications
- 7. Prospects of the Field
- 8. Conclusions

Control of Bifurcations

Guanrong Chen, Center for Chaos Control and Synchronization, City University of Hong Kong, P. R. China

- 1. Introduction
- 2. Bifurcation Control The New Challenge
- 3. Bifurcations in Control Systems
- 4. Preliminaries of Bifurcation Theory
 - 4.1. Bifurcations in One-dimensional Systems
 - 4.2. Hopf Bifurcation
- 5. State-Feedback Control of Bifurcations
 - 5.1. Control of Static Bifurcations
 - 5.2. Control of Hopf Bifurcation
- 6. Some Other Bifurcation Control Methods
 - 6.1. Washout-Filter Aided Bifurcation Control
 - 6.2. Normal Forms and Invariants Based Bifurcation Control
 - 6.2.1. Normal Forms Based Bifurcation Control
 - 6.2.2. Simplest Normal Forms and Bifurcation Control
 - 6.3. Harmonic Balance Approximations for Bifurcation Control
 - 6.4. Controlling Hopf Bifurcation in Discrete Maps
- 7. Controlling Multiple Limit Cycles
 - 7.1. Graphical Hopf Bifurcation Theorem
 - 7.2. Controlling the Birth of Multiple Limit Cycles
 - 7.3. Controlling the Amplitudes of Limit Cycles
- 8. Potential Engineering Applications of Bifurcation Control
 - 8.1. Controlling Cardiac Alternans and Rhythms
 - 8.2. Controlling Axial Flow Compressors and Jet Engines
 - 8.3. Controlling Power Networks
 - 8.4. Application of Bifurcation Control in Mechanical Systems
- 9. Future Research Outlook

Analysis of Chaotic Systems

298

260

A.L. Fradkov, Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia

- 1. Introduction
- 2. Notion of chaos
 - 2.1. From Oscillations to Chaos: Evolution of the Concept of Oscillations
 - 2.2. Definition of a Chaotic System

- 3. Examples of chaotic systems
 - 3.1. Lorenz System and Chua circuit
 - 3.2. Examples of Discrete-time Chaotic Systems
- 4. Criteria for chaos
 - 4.1. Lyapunov and Bohl Exponents
 - 4.2. Poincaré Map and Delayed Coordinates
 - 4.3. Sharkovsky-Li-Yorke Criterion
 - 4.4. Homoclinic orbits, Shilnikov theorem and Melnikov function
- 5. Quantification of chaos
 - 5.1. Fractal Dimensions and Embedding
 - 5.2. Kolmogorov-Sinai Entropy

Control of Chaotic Systems

A. L. Fradkov, Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, RUSSIA

- 1. Introduction
- 2. Notion of chaos
- 3. Models of controlled systems and control goals
- 4. Methods of controlling chaos: continuous-time systems
 - 4.1. Feedforward Control by Periodic Signal
 - 4.2. Linearization of Poincaré Map (OGY Method)
 - 4.3. Delayed Feedback
 - 4.4. Linear and Nonlinear Control
 - 4.4.1. Feedback Linearization
 - 4.4.2. Goal Oriented Techniques
 - 4.4.3. Other Methods
 - 4.5. Adaptive Control
- 5. Discrete-time Control
- 6. Neural networks
- 7. Fuzzy systems
- 8. Control of chaos in distributed systems
- 9. Chaotic mixing
- 10. Generation of chaos (chaotization)
- 11. Other problems
- 12. Conclusions

Index

About EOLSS

363 369