CONTENTS

VOLUME II

Classical Design Methods for Continuous LTI-Systems

R.T Stefani, Department of Electrical Engineering, California State University, Long Beach, USA

Introduction 1

Controller Design in Time-Domain

Unbehauen H, Control Engineering Division, Department of Electrical Engineering and Information Sciences, Ruhr University Bochum, Germany

- 1. Problem formulation
- 2. Time-domain performance specifications
 - 2.1. Transient Performance
 - 2.2. Integral Criteria
 - 2.3. Calculation of the ISE-Performance Index
- 3. Optimal controller settings subject to the ISE-criterion
 - 3.1. Example
 - 3.2. Optimal Settings for Combinations of PT n-Plants and Standard Controllers of PID Type
- 4. Empirical procedures
 - 4.1. Tuning Rules for Standard Controllers
 - 4.1.1. Ziegler-Nicols Tuning Rules
 - Some Other Useful Tuning Rules 4.1.2.
 - 4.2. Empirical Design by Computer Simulation
- Mixed time- and frequency-domain design by standard polynomials 5.
- 6 Concluding Remarks

Design in the Frequency Domain

Stefani R.T, Department of Electrical Engineering, California State University Long Beach, USA

1

5

- 1. Introduction
- Gain and Phase Margins 2.
 - 2.1. Gain Margin
 - 2.2. Phase Margin
 - 2.3. Examples
 - 2.4. Relationship Between PM and Damping Ratio
- 3. Types of Compensators
- 4. Design of PI and Lag Compensators
 - 4.1. Analysis of PI and Lag Compensators
 - 4.2. Design Rules for PI and Lag Compensators
 - 4.3. Example
- 5. Design of PD Compensators (Realized by Rate Feedback)
 - 5.1. Analysis of PD Compensations
 - 5.2. Design Rules for PD (Rate Feedback) Compensators
 - 5.3. Example
- 6. Design of Lead Compensators
 - 6.1. Analysis of Lead Compensators
 - 6.2. Design Rules for Lead Compensators
 - 6.3. Example
- 7. Design of PID Compensators
 - 7.1. Analysis of PID Compensators
 - 7.2. Design Rules for PID Compensators
 - 7.3. Example

- 8. Design of Lag Lead Compensators
 - 8.1. Analysis of Lag-Lead Compensators
 - 8.2. Design Rules for Lag-Lead Compensation
 - 8.3. Example

PID Control

Araki M, Kyoto University, Japan

58

80

- 1. Introduction
- 2. Process Models
- 3. Performance Evaluation of PID Control Systems
- 4. Action Modes of PID Controllers
- 5. Design of PID Control Systems
 - 5.1. Selection of Action Mode
 - 5.2. Identification of Process Model Parameters
 - 5.3. Tuning of PID Parameters
- 6. Advanced Topics
 - 6.1. Windup of the Integral Element and Anti-Windup Mechanism
 - 6.2. Two-Degree-of-Freedom PID Controllers
 - 6.3. Sophisticated Models
 - 6.4. Other Tuning Methods for PID Parameters

Internal Model Control

Daniel E. Rivera, Department of Chemical and Materials Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287-6006,USA Melvin E. Flores, Department of Chemical and Materials Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287-6006,USA

- 1. Introduction
- 2. The Internal Model Control Structure
 - 2.1. Closed-loop Transfer Functions for IMC
 - 2.2. Internal Stability
 - 2.3. Asymptotic closed-loop behavior (System Type)
 - 2.4. Performance Measures
- 3. Internal Model Control Design Procedure
 - 3.1. Requirements for Physical Realizability on q, the IMC Controller
 - 3.2. Limitations to Perfect Control: the Need for an IMC Design Procedure
 - 3.3. Statement of the IMC Design Procedure
- 4. Application of IMC design to Simple Models
 - 4.1. Example 1a: PI Tuning for A First-Order System
 - 4.2. Example 1b: PI Tuning for a First-Order System with RHP Zero
 - 4.3. Example 1c: PI with Filter Tuning for a First-Order System with LHP Zero
 - 4.4. Example 2: PID Tuning for a Second-Order System with RHP Zero
 - 4.5. Example 3: PID with Filter Tuning for a second-Order Model with RHP Zero
 - 4.6. Example 4: Dead-time Compensation for a First-Order with Delay Plant
 - 4.7. IMC-PID Tuning Rules for Plants with Integrator Dynamics
- 5. IMC-PID tuning Rules for First-Order with Delay Plants
- 6. Additional IMC Design Topics

Smith Predictor and its Modifications

109

Hang C. C, Department of Electrical Engineering, National University of Singapore, Singapore.

- 1. Introduction
- 2. Controller design
- 3. Performance comparison

- 4. Modification for high order systems
- Modification for rapid load rejection 5.
- Modifications for open-loop unstable systems 6.

Digital Control Systems

Paraskevopoulos P.N, National Technical University of Athens, Greece

- The Basic Structure of Digital Control Systems 1.
- 2. Discrete-Time Systems
 - 2.1. Introduction
 - 2.2. Analysis of Linear Time-Invariant Discrete-Time Systems
- 3. Sampled-Data Systems
 - 3.1. Introduction
 - 3.2. Description and Analysis of Sampled-Data Systems
 - Example 1 3.2.1.
 - Example 2 3.2.2.
 - 3.3. Analysis of Sampled-Data Systems
- Stability 4.
 - 4.1. Definitions and Basic Theorems of Stability
 - 4.1.1. Introduction
 - 4.1.2. Stability of Linear, Time-Invariant, Discrete-Time Systems
 - Bounded-Input, Bounded-Output Stability 4.1.3.
 - 4.2. Stability Criteria
 - 4.2.1. The Routh Criterion using the Mobius Transformation
 - 4.2.2. Example 3
 - 4.2.3. The Jury Criterion
 - 4.2.4. Example 4
 - 4.2.5. Example 5
 - 4.2.6. Example 6
- 5. Controllability
 - 5.1. Example 7
 - 5.2. Example 8
- 6. Observability
 - 6.1. Example 9
- 7. Loss of Controllability and Observability due to Sampling 7.1. Example 10
- 8. Kalman Decomposition

Discrete-Time, Sampled-Data, Digital Control Systems, and Quantization Effects 152 Paraskevopoulos P.N, National Technical University of Athens, Greece

- 1. Discrete-Time Systems
 - 1.1. Introduction
 - 1.2. Properties of Discrete-Time Systems
 - 1.2.1. Linearity
 - 1.2.2. Time-Invariant System
 - 1.2.3. Causality
 - 1.3. Description of Linear, Time-Invariant, Discrete-Time Systems
 - **Difference Equations** 1.3.1.
 - Transfer Function 1.3.2.
 - 1.3.3. Impulse Response or Weight Function
 - **State-Space Equations** 1.3.4.
 - 1.4. Analysis of Linear, Time-Invariant, Discrete-Time Systems
 - 1.4.1. Analysis Based on the Difference Equation
 - Analysis Based on the Transfer Function 1.4.2.
 - Analysis Based on the Impulse Response 1.4.3.

- 1.4.4. Analysis Based on the State Equations
- 2. Sampled-Data Systems
 - 2.1. Introduction
 - 2.2. D/A and A/D Converters
 - 2.3. Hold Circuits
 - 2.4. Description and Analysis of Sampled-Data Systems
 - 2.4.1. Analysis Based on the State Equations
 - 2.4.2. Analysis Based on H(kT)
 - 2.4.3. Analysis based on H(z)
- 3. Digital Control Systems
 - 3.1. Introduction
 - 3.2. Comparison between Digital and Continuous-Time Control Systems
- 4. Quantization Effects
 - 4.1. Introduction
 - 4.2. Truncation and Rounding

Discrete-Time Equivalents to Continuous-Time Systems

Mohammed S. Santina, *Fellow, The Boeing Company, USA* Allen R. Stubberud, *University of California Irvine, USA*

- 1. Introduction
- 2. Design of Discrete-Time Control Systems for Continuous-Time Plants
 - 2.1. Sampling and A/D Conversion
 - 2.2. Reconstruction and D/A Conversion
- 3. Discrete-Time Equivalents of Continuous-Time Plants
- 4. Discretizing Continuous-Time Controllers
 - 4.1. Numerical Approximation of Differential Equations
 - 4.1.1. Euler's Forward Method (One Sample)
 - 4.1.2. Euler's Backward Method (One Sample)
 - 4.1.3. Trapezoidal Method (Two Sample)
 - 4.1.4. An Example
 - 4.1.5. Mapping Between S and Z Planes Using Euler's and Tustin's Methods
 - 4.1.6. Frequency Response Approximations
 - 4.1.7. Bilinear Transformation with Frequency Prewarping
 - 4.2. Matching Step and Other Responses
 - 4.3. Pole-Zero Matching
- 5. Discretization of Continuous-Time State Variable Models
 - 5.1. Discrete-Time Models of Continuous-Time Systems
 - 5.2. Discrete-Time Approximations of Continuous-Time Systems

Design Methods for Digital Controllers, Sample-Rate

Paraskevopoulos P.N, National Technical University of Athens, Greece

- 1. Design Methods for Digital Controllers
 - 1.1. Introduction
 - 1.2. Discrete-Time Controller Design Using Indirect Techniques
 - 1.3. Direct Digital Controller Design via the Root-Locus Method
 - 1.4. Direct Digital Controller Design Based on the Frequency Response
 - 1.4.1. Introduction
 - 1.4.2. Bode Diagrams
 - 1.4.3. Example 1
 - 1.4.4. Nyquist Diagrams
 - 1.5. The PID Controller
 - 1.6. State-Space Design Methods
 - 1.7. Optimal Control
- 2. Sample Rate

176

- 2.1. Introduction
- 2.2. Example 2

Real-Time Implementation Ulrich Kiffmeier, <i>dSPACE GmbH</i> , <i>Technologiepark 25, 33100 Paderborn, Germany</i> .		237
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Introduction A Simple Real-Time System Computational Delay and Jitter Real-Time Integration of Continuous-Time States Implementation on Fixed-Point Processors Implementation on Floating-Point Processors Real-Time Operating Systems Intertask Communication in Multitasking Systems Distributed Real-Time Systems Time Triggered Systems for Safety Critical Applications Development Tools for Real-Time Implementation	
Ind	Index	

About EOLSS