CONTENTS

VOLUME III

Design of State Space Controllers (Pole Placement) for SISO Systems 1 Lohmann, Boris, Institut für Automatisierungstechnik, Universität Bremen, Germany 1		
1. 2. 3. 4.	Design Objective General Remarks on State Space Design System Class Accompanying Example: Inverted Pendulum on Cart	
	cription and Analysis of Dynamic Systems in State Space is Lohmann, <i>Institut für Automatisierungstechnik, Universität Bremen, Germany</i>	14
1.	 Extraction of the State Space Representation from the Transfer Function <i>G(s)</i> 1.1. Solution 1: Control Canonical Form 1.2. Solution 2: Observer Canonical Form 1.3. Solution 3: Modal Canonical Form (Diagonal and Jordan Canonical Form) 	
2. 3.	Transformation to Diagonal FormSolution of the State Equations3.1. Matrix Exponential3.2. Solution of the State Equations by State Transition Matrix	
4. 5.	3.3. Solution of the Homogeneous State Differential Equation from the Modal Canonical For Stability Controllability and Observability	m
	 5.1. Definition of Controllability 5.2. Criteria of Controllability 5.3. Definition of Observability 5.4. Observability Criteria 5.5. Interpretation of Controllability and Observability 	
	 5.5. Interpretation of Controllability and Observability 5.6. Controllability and Observability of eigenvalues 5.7. Pole-Zero Cancellations 5.8. Minimal Realization 	
6.	Discrete Time Systems	
	ntroller Design is Lohmann, Institut für Automatisierungstechnik, Universität Bremen, Germany	52
	Objectives and Structure of State Feedback Control Determination of the pre-compensator <i>g</i> Determination of the Controller k 3.1. Determination by Matching of Coefficients 3.2. Determination from Control Canonical Form 3.3. Determination by Transform to Control Canonical Form: Ackermann's Formula 3.4. Design Parameters	
4. 5.	Example: Inverted Pendulum Discrete-Time State Feedback and Dead-Beat Behavior	
Observer Design 72 Boris Lohmann, Institut für Automatisierungstechnik, Universität Bremen, Germany 72		

- 1. Objectives and Structure of the State Observer
- 2. Design of the Observer
 - 2.1. Observer Design by Matching of Coefficients

- 2.2. Observer Design by State-Feedback Design Procedure
- 2.3. Design Parameters
- 3. Example: Inverted Pendulum
- 4. The Observer in Closed-Loop Control- The Separation Principle
- 5. Reduced Order Observer
- 5.1. Example
- 6. Discrete- Time Observers

Extended Control Structures

Boris Lohmann, Institut für Automatisierungstechnik, Universität Bremen, Germany

- 1. Steady State Behaviour under realistic assumptions
 - 1.1. External Disturbances
 - 1.2. Model Uncertainty and Parameter Variations
- 2. PI- State Feedback Control
 - 2.1. Structure and Design
 - 2.2. Properties and Further Extensions
- 3. Model-based dynamic pre-compensator
 - 3.1. Structure and Design
 - 3.2. Combination with PI-state-feedback

Basic Nonlinear Control Systems

D. P. Atherton, University of Sussex, UK

- 1. Introduction
- 2. Forms of nonlinearity
- 3. Structure and behaviour
- 4. Stability
- 5. Aspects of design
- 6. Conclusions

Describing Function Method

- D. P. Atherton, University of Sussex, UK
- 1. Introduction
- 2. The Sinusoidal Describing Function
- 3. The Evaluation of some DFs
- 4. Limit Cycles and Their Stability
- 5. DF Accuracy
- 6. Some Examples of DF Usage
 - 6.1. Feedback Loop Containing a Relay with Dead Zone
 - 6.2. Autotuning in Process Control
- 7. Closed Loop Frequency Response
- 8. Compensator Design
- 9. Additional Aspects
- 10. Conclusions

Second Order Systems

D P Atherton, University of Sussex, UK

- 1. Introduction
- 2. Basic Principles
- 3. Analysis Using the Phase Plane
 - 3.1. Example 1
 - 3.2. Example 2

129

101

90

109

- 3.3. Example 3
- 4. Conclusions

Stability Theory

Peter C. Müller, University of Wuppertal, Germany

- 1. Introduction
- 2. Linearization: Stability in the First Approximation
- 3. The Direct Method of Lyapunov
 - 3.1. Nonlinear Systems
 - 3.2. Linear Systems

Popov and Circle Criterion

Peter C. Müller, University of Wuppertal, Germany

- 1. Introduction
- 2. Kalman-Yakubovich-Lemma
- 3. Criteria for Absolute Stability

Control by Compensation of Nonlinearities

Gang Tao, Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22903, USA

Avinash Taware, GE Global Research Center, Schenectady, NY 12309, USA

- 1. Introduction
- 2. Plants with Actuator Nonlinearities
- 3. Parameterized Inverses
- 4. State Feedback Designs
- 5. Output Feedback Inverse Control
- 6. Output Feedback Designs
- 7. Designs for Unknown Linear Dynamics
- 8. Designs for Multivariable Systems
- 9. Designs for Nonlinear Dynamics
- 10. Neural Network based Adaptive Inverse Compensation
- 11. An illustrative Example
- 12. Concluding Remarks

Estimation and Compensation of Nonlinear Perturbation by Disturbance Observers 217 Peter C. Müller, *University of Wuppertal, Germany*

- 1. Introduction
- 2. Problem Statement
- 3. Theory
 - 3.1. Estimation of Nonlinearities
 - 3.1.1. Comments on The Observability Condition
 - 3.1.2. Choice of Fictitious Model
 - 3.1.3. PI-observer
 - 3.2. Convergence and Estimation Errors
 - 3.2.1. High Gain Proof
 - 3.2.2. Estimation Errors
 - 3.2.3. Lyapunov Approach
 - 3.3. Compensation of Nonlinearities
 - 3.4. Closed-Loop Control System
- 4. Applications

142

154

165

iii

Anti Windup and Override Control

Adolf Hermann Glattfelder, Automatic Control Laboratory, ETH Zürich, Switzerland Walter Schaufelberger, Automatic Control Laboratory, ETH Zürich, Switzerland

- 1. Introduction
 - 1.1. Control Systems with Input Constraints
 - 1.2. Control Systems with Mode Switch
 - 1.3. Control Systems with Output Constraints
 - 1.4. Design Approaches
- 2. PI-Control with Input Saturations
 - 2.1. Problem Statement and Test Cases
 - 2.2. The Reset Windup Effect
 - 2.3. Anti Windup Structures
 - 2.4. Transient Responses for the Test Cases
 - 2.5. Stability Properties
 - 2.6. Stability Analysis of the Test Cases
 - 2.7. Summary
- 3. Plants of dominant Second Order
 - 3.1. Problem Statement
 - 3.2. The Plant Windup Effect
 - 3.3. Stability Properties
 - 3.4. Anti Plant Windup Structures
 - 3.5. Extensions
 - 3.6. Summary
- 4. Output Constrained Control
 - 4.1. Basic Concepts
 - 4.2. Stability Analysis
 - 4.3. An Example
 - 4.4. Summary
- 5. Conclusion and Outlook

Gain-Scheduling

D.J.Leith, Hamilton Institute, NUI Maynooth/University of Strathclyde, Ireland WE.Leithead, Hamilton Institute, NUI Maynooth/University of Strathclyde, Ireland

- 1. Introduction
- 2. Linearization Theory
 - 2.1. Series Expansion Linearization about a Single Trajectory or Equilibrium Point
 - 2.2. Series expansion linearization families
 - 2.3. Off-equilibrium linearizations
- 3. Divide and Conquer Gain-Scheduling Design
 - 3.1. Classical gain-scheduling design
 - 3.2. Neural/fuzzy gain-scheduling
 - 3.3. Gain-scheduling using off-equilibrium linearizations
- 4. LPV Gain-Scheduling
 - 4.1. LPV systems
 - 4.2. Small-gain LFT approaches
 - 4.3. Lyapunov-based LPV approaches
 - 4.3.1. Quadratic Lyapunov function approaches
 - 4.3.2. Parameter-dependent Lyapunov function approaches
- 5. Outlook

Index

About EOLSS

228

273

307

301