CONTENTS

VOLUME VI

Identification of Nonlinear Systems
H. Unbehauen, Ruhr University Bochum, Germany

1. Introduction
2. Parametric Models
 2.1. Regression Models
 2.1.1. Kolmogorov-Gabor (KG-) Polynomial Model
 2.1.2. Basis Function Network Models
 2.1.2.1. The Basic Idea
 2.1.2.2. Nonlinear Network Model Structures
 2.2. Input-Output Models Based on Nonlinear Differential Equations
 2.3. Nonlinear State-Space Models
 2.3.1. State-Space Modeling by Filtering
 2.3.2. Sliding Mode System Reference Adaptive Model (SRAM)
 2.3.3. Subspace Models
3. Nonparametric Models
 3.1. The Volterra Series Model
 3.2. The Wiener Kernel Model
 3.3. Generalized Frequency Response Models
 3.4. Other Types of Nonparametric Models
 3.4.1. Step Response Model
 3.4.2. Phase Plane Model
 3.4.3. Non-parametric State Dependent Parameter Model
4. Semi-Parametric Models
 4.1. Fuzzy Models
 4.1.1. Mamdani-Model
 4.1.2. Takagi-Sugeno-Model
 4.2. Neuro-Fuzzy (NF-) Models
5. Specific Nonlinear Models
 5.1. Block-oriented Models
 5.1.1. Hammerstein Model
 5.1.2. Wiener Model
 5.1.3. Other Block-oriented Models
 5.2. The Bilinear Model
6. Signal Dependent Parameter Models
7. Identification Methods
 7.1. Estimation of Model Parameters
 7.1.1. Parameter Estimation for LIP-Type Models
 7.1.2. Parameter Estimation for Non-LIP-Type Models
 7.1.2.1. Prediction Error Methods
 7.1.2.2. Numerical Search Methods
 7.2. Estimation of Model Structure
 7.3. Model Validation
8. Critical Valuation of Some Most Important Nonlinear Models
9. Conclusions

Nonparametric System Identification
H. Kashiwagi, Kumamoto University, Japan

1. Introduction
2. Representation of Nonlinear Systems
3. Identification of Wiener Kernels
3.1. Wiener’s Orthogonal Expansion Method
3.2. Lee - Schetzen’s Method
4. Identification of Volterra Kernels
 4.1. Hooper-Gyftopoulos Method
 4.2. Watanabe - Stark’s Method
 4.3. Kashiwagi - Sun’s Method
5. Frequency Domain Approach

Identification of Block-Oriented Models
Ronald K. Pearson, *ProSanos Corporation, Harrisburg, PA, USA*

1. Introduction
2. The building blocks
 2.1. Linear Dynamic Subsystems
 2.2. Static Nonlinearities
3. Hammerstein models
4. Wiener models
5. Other feedforward structures
 5.1. More Complex Series-connected Structures
 5.2. Parallel-connected Model Structures
6. Qualitative behavior of feedforward structures.
7. Feedback block-oriented structures
8. Practical issues in model building
9. Concluding Remarks

Identification of NARMAX and Related Models
Stephen A. Billings, *Department of Automatic Control and Systems Engineering, University of Sheffield, UK*
Daniel Coca, *Department of Automatic Control and Systems Engineering, University of Sheffield, UK*

1. Introduction
2. System Identification
3. Nonlinear Models vs. Linear Models
4. The NARMAX model
5. Practical Implementations of the NARMAX model
 5.1. Polynomials and Rational Implementations
 5.2. Neural Network Representations
 5.2.1. Multilayer Perceptron Networks
 5.2.2. Radial Basis Function Networks
 5.3. Wavelet Implementations
 5.3.1. The Wavelet Network
 5.3.2. Wavelet Multiresolution Models
6. The NARMAX Method
 6.1. Structure Determination and Parameter Estimation
 6.1.1. Nonlinear in the Parameter Models
 6.1.2. Linear in the Parameters Models
 6.2. Model Validation
7. Mapping the NARMAX Model in the Frequency Domain
8. A Practical Example
9. Conclusions

System Identification Using Neural Networks
Abid Ali, *Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Germany*
Christian Schmid, *Institute of Automation and Computer Control, Ruhr-Universität Bochum, Germany*
1. Introduction
2. Artificial Neural Networks
 2.1. Static Neural Networks
 2.1.1. Multi-Layer Perceptron Networks
 2.1.2. Radial-Basis Function Networks
 2.1.3. Local Model Networks
 2.2. Dynamic Neural Networks
 2.2.1. Dynamic Multi-Layer Perceptron Networks
 2.2.2. Recurrent Networks
3. System Identification using Artificial Neural Networks
 3.1. Identification of Discrete-Time Systems
 3.2. Identification of Continuous-Time Systems
 3.3. Miscellaneous Issues

System Identification Using Fuzzy Models
Robert Babuška, Delft University of Technology, Faculty of Information Technology and Systems, The Netherlands

1. Introduction
2. Nonlinear Dynamic Models for System Identification
3. Fuzzy Models
 3.1. Mamdani Model
 3.2. Takagi-Sugeno model
 3.3. Fuzzy Logic Operators
 3.4. Dynamic Fuzzy Models
4. Identification of Fuzzy Models
 4.1. Structure and Parameters
 4.2. Estimation of Consequent Parameters
 4.3. Construction of Antecedent Membership Functions
 4.4. Model Validation
5. Illustrative Example
6. Conclusions

System Identification Using Wavelets
Daniel Coca, Department of Electrical Engineering and Electronics, University of Liverpool, UK
Stephen A. Billings, Department of Automatic Control and Systems Engineering, University of Sheffield, UK

1. Introduction
2. Wavelets - A Brief Overview
 2.1. The Continuous Wavelet Transform
 2.2. Wavelet Series
 2.2.1. Dyadic Wavelets
 2.2.2. Wavelet Multiresolution Approximations
3. System Identification
4. System Identification using Wavelets
 4.1. System Identification Using Wavelet Networks
 4.1.1. The Wavelet Network Model
 4.1.2. Structure Selection and Parameter Estimation for Wavelet Network Models
 4.2. Wavelet Multiresolution Models
 4.2.1. The B-spline Wavelet Multiresolution Model Structure
 4.2.2. Model Sequencing and Structure Selection
5. Conclusions
Parameter Estimation for Differential Equations

Amit Patra, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur-721302, India

1. Introduction
2. The Hartley Transformation
 2.1. The Continuous Hartley Transform (CHT)
 2.2. Properties of CHT
 2.2.1. Scaling of Variable
 2.2.2. Convolution in Time-domain
 2.2.3. Multiplication in the Time-Domain
 2.2.4. Differentiation
 2.3. The Discrete Hartley Transform (DHT)
3. The Hartley Modulating Functions
 3.1. Definition
 3.2. Properties of HMF
 3.2.1. Spectra for Derivatives of Signals
 3.2.2. Spectra for the Product of a Measured Signal and the Derivative of Another
4. Formulation of the parameter estimation equation
 4.1. Linear Systems
 4.2. Integrable Nonlinear Systems
 4.3. Modulatible Nonlinear Systems
5. Computational Issues
 5.1. Computation of CHT using DHT
 5.2. Computation of HMF Spectra
 5.3. Computing the Estimates
 5.4. Frequency-weighted Estimation
6. Illustrative Examples
7. Application to an Inverted Pendulum Model
 7.1. Derivation of System Equations
 7.2. Data Generation
 7.3. Formulating the Parameter Estimation Equations
8. Conclusions

Parameter Estimation for NonLinear Continuous-Time State-Space Models from Sampled Data

C. Bohn, Continental AG, Strategic Technology Department, Hanover, Germany

1. Introduction and Overview
2. Mathematical Preliminaries
3. The Prediction-Error Approach to Parameter Estimation
4. State-Space Models and State Estimation
5. Parameter Estimation for State-Space Models
 5.1. State Augmentation
 5.2. Prediction-Error Approach
 5.3. Remarks
6. Conclusion

Identification in the Frequency Domain

Julius S. Bendat, J.S. Bendat Company, Los Angeles, CA, USA

1. Introduction
2. Linear System Identification
 2.1. SI/SO Linear Models
 2.2. MI/SO Linear Models
3. Nonlinear System Identification
3.1. Volterra Nonlinear Models
3.2. Hammerstein and Wiener Nonlinear Models
3.3. SI/SO Nonlinear Models
3.4. Models With Nonlinear Feedback
4. Conclusions for Nonlinear System Identification

Parametric Identification using Sliding Modes
Fabienne Floret-Pontet, Laboratoire des signaux et systèmes, CNRS, Supelec, FRANCE
Francoise Lamnabhi-Lagarrigue, Laboratoire des signaux et systèmes, CNRS, Supelec, FRANCE

1. Introduction
2. State Identification
3. Parameter Identification
4. State and parameter identification
5. Simulations results
 5.1. Noiseless Context
 5.2. Robustness Study
6. Conclusion

Bound-based Identification
Eric Walter, CNRS-Supélec-Université Paris-Sud, France.

1. Introduction
2. Bounded-error estimation
3. Characterization of the feasible set for the parameters
 3.1. The Error is Affine in the Parameters
 3.2. The Error is not Affine in the Parameters

Linear-Model Case
Norton, John, Department of Electronic, Electrical and Computer Engineering, School of Engineering, University of Birmingham, UK

1. Bounding a linear model: the simplest case
2. Computation of the exact feasible set
3. Approximate parameter bounding
 3.1. Limited-complexity polytopes
 3.2. Ellipsoidal bounding
 3.3. Box bounding
 3.4. Parallelotope bounding
 3.5. Hybrid algorithms
4. Parameter bounding with unknown output-error bound
5. Parameter bounding with uncertain explanatory-variables vector
6. Clashes and outliers
7. Parameter bounds for time-varying linear systems
 7.1. Heuristic recursive bounding of time-varying parameters using ellipsoids
 7.2. Bounding of time-varying parameters treated as state variables
8. Conclusions

Nonlinear-Model Case
Keesman, Karel J. Systems and Control Group, Wageningen University, The Netherlands

1. Introduction
2. Definitions and notation
3. Classification of non-linear parameter bounding algorithms
3.1. Intersection
3.2. Encapsulation
3.3. Discrete approximation
3.4. Projection
3.5. Special model classes
4. Example
5. Concluding Remarks

Practical Issues of System Identification
Lennart Ljung, Linköping University, Sweden.

1. The Framework
 1.1. Starting Point
 1.2. Some Typical Model Structures
 1.3. Estimating the Parameters
2. The User and the System Identification Problem
 2.1. The Tool: Interactive Software
3. Choice of Input Signals
 3.1. Common Input Signals
 3.2. Periodic Inputs
4. Preprocessing Data
 4.1. Drifts and Detrending
 4.2. Prefiltering
5. Selecting Model Structures
6. Some Applications

Index

About EOLSS