CONTENTS

VOLUME X

Environmental Biotechnology - Socio-Economic Strategies for Sustainability 1
Horst Werner Doelle, MIRCEN-Biotechnology, Australia
Poonsuk Prasertsan, Prince of Songkla University, Thailand

1. Introduction
 2.1. General Description
 2.2. The Carbon Cycle
 2.3. The Nitrogen Cycle
 2.3.1. Nitrogen fixation
 2.3.2. Nitrification
 2.3.3. Denitrification
 2.4. The Sulfur Cycle
 2.4.1. Oxidative sulfur transformations
 2.4.2. Reductive Sulfur Transformation
 2.5. Phosphorous Cycle
 2.6. Interrelations between the cycling of individual elements
3. Socio-economic strategies
 3.1. Community involvement and joint venture capital
 3.2. Multiproduct formation from renewable resources
 3.2.1. Grain
 3.2.2. Sagopalm
 3.2.3. Sugarcane
 3.2.4. Agro-Industries
 3.3. Bioconversion of wastes
 3.3.1. Anaerobic Digestion - energy [biogas], biofertiliser and food production
 3.3.2. Gasification - energy [electricity] production
 3.3.3. Ethanol - biofuel production
 3.3.4. Composting - biofertiliser production
 3.3.5. Mushroom production - food and biofertiliser production
 3.3.6. Aquaculture
 3.3.7. Microbial Biomass Protein and Silage - feed production
4. Benefits to the environment

Recycling Livestock Excreta in Integrated Farming Systems 41
Thomas Reginald Preston, Royal University of Agriculture, Cambodia

1. Introduction
2. Livestock Excreta as Livestock Feed
3. Potential Benefits from the Recycling of Livestock Excreta
4. Methods of Processing (Recycling) of Livestock Excreta
5. The Biodigester Sub-system
 5.1. Types of Biodigester
 5.2. Factors Influencing the Cost and Performance of Plastic Biodigesters
 5.2.1. The Plastic Tube
 5.2.2. The Inlet and Outlet Pipes
 5.2.3. Connecting the Tubular Film with the Inlet and Outlet Pipes
 5.2.4. The Gas Line
 5.2.5. The Reservoir
 5.3. Management Factors that Govern Gas Production
 5.3.1. Size of the Biodigester
5.3.2. The Loading Rate
5.3.3. Residence Time
5.3.4. Liquid Volume
5.3.5. Level or Inclined Biodigesters
5.3.6. Animal Species
5.4. Commonly Encountered Problems
5.4.1. Life-span of Tubular Polyethylene Biodigesters
5.4.2. Accumulation of Sludge and Scum
5.4.3. Water in the Pipeline
6. Excreta as Source of Nutrients for Water Plants, Terrestrial Crops and Earthworms
6.1. Water Plants
 6.1.1. Cultivating Duckweed
 6.1.1.1. Construction of the Ponds
 6.1.1.2. Nutritive Value of Duckweed
 6.1.1.3. Fertilizing the Duckweed
 6.1.1.4. Problems and Possible Solutions
6.2. Fish Ponds
6.3. Earthworms
 6.3.1. Background
 6.3.2. Species of Earthworm
 6.3.3. Management
 6.3.4. Production Coefficients
6.4. Manure and Biodigester Effluent as Fertilizer for Field Crops
 6.4.1. Goat Manure as Fertilizer
 6.4.2. Biodigester Effluent
7. Conclusions
BIOTECHNOLOGY

4.2.2.3. Improve operating efficiency of equipment
4.2.2.4. Modify equipment to enhance or permit recovery or recycling options
4.2.2.5. Eliminate source of leaks and spills
4.2.3. Production process modifications
4.2.3.1. Optimize reactions and raw material used
4.2.3.2. Modify process conditions or practices to reduce waste generation
4.2.4. Waste recycling
4.2.4.1. On-site recycling
4.2.4.2. Off-site recycling
4.2.4.3. Participation in waste exchanges (using one company’s waste as another’s feedstock)
5. Future prospect of clean technologies

Urban Rooftop Microfarms 89
Geoffrey Eric Wilson, Urban Agriculture Online, Australia

1. Introduction
2. Microfarming—What Is It?
3. Why Organic Hydroponics?
4. Sample Projects
5. The Silwood Suburban Microfarm
6. Mt. Gravatt Study
7. Profitability
8. Conclusion

Biomass and Organic Waste Conversion to Food, Feed, Fuel, Fertilizer, Energy and Commodity Products 104
Horst Werner Doelle, MIRCEN-Biotechnology, Australia

1. Introduction
2. Planning Strategies
 2.1. Historical Development of the Clean Bioprocess Technology Concept
 2.2. Future Planning Strategies for Urban and Rural Sustainability
 2.3. The Concept of Bio-Refinery
 2.4. Bio-refinery Management
3. Agricultural Production Unit
4. The Bioprocess Unit
 4.1. Raw Material
 4.2. Food, Feed, Fertilizer and Energy Production from Lignocellulosic Material
 4.2.1. Food Production
 4.2.2. Animal Feed Production
 4.2.3. Fertilizer
 4.2.4. Energy
 4.2.4.1. Direct Combustion for Electricity and Heat Generation
 4.2.4.2. Thermo-chemical Processes
 4.2.4.3. Microbial Processes
 4.3. Food, Feed, Fertilizer and Energy Production from Non-lignocellulosic Polymers
 4.3.1. Polymer Conversion into Monomeric Units for Microbial Processing
 4.3.2. Microbial Process Development
 4.3.3. Multiproducts from Sagopalm (Metroxylon sagu)
 4.3.3.1. Lignocellulosic Processing
 4.3.3.2. Non-lignocellulosic Biomass Utilisation
 4.3.4. Multiproduct Formation from Sugarcane
 4.3.5. Food Processing Industries
 4.3.6. Multiproducts from Palm oil industry
 5. Waste Management Control Unit
1. Introduction
2. Why Recycle?
 2.1. Economic Advantage
 2.2. Resource Constraints
 2.3. Equality of Access
 2.4. Environmental Drivers
 2.5. Intergenerational Equity
 2.6. Recycled Water—a Valuable Resource
3. Uses of Recycled Water
 3.1. Water Quality to Fit the Purpose
 3.2. Recycling in Agriculture
 3.3. Recycling in Industry and Commerce
 3.4. Recycling in Urban Areas
4. Issues and Options in the Use of Recycled Water
 4.1. General Health Considerations
 4.2. Risk Assessment
 4.3. Epidemiological Studies
 4.4. Defining an Acceptable Health Risk
 4.5. Setting Appropriate Water Quality Criteria
 4.6. Microbiological Contaminant Management
 4.7. Indicator Organisms
 4.8. Identification Methods based on Nucleic Acid Ingestion Pathways
 4.9. Ingestion Pathways
 4.10. Chemical Contaminant Management
 4.11. Pesticides, Herbicides, Endocrine Disruptors and Artificial Hormones
 4.12. Cyanobacterial Toxins (Blue-Green Algal Toxins)
 4.13. Stormwater Management
 4.15. Research Needs
5. Treatment Technologies
 5.1. General Treatment Processes
 5.1.1. Physico-Chemical Treatment Processes
 5.1.2. Biological Treatment Processes
 5.1.3. Chemical Disinfection
 5.1.4. Physical Disinfection
 5.2. Domestic Scale Treatment Technologies
 5.3. Local and Regional Treatment Technologies
 5.4. Storage and Transport Technologies
 5.5. Managed Aquifer Recharge Methods
 5.6. Research Needs
6. Legal Issues
 6.1. Regulation
 6.2. Ownership of the Resource
 6.3. Legal Liability
7. Economics
8. Community Involvement
9. Acknowledgments

Microorganisms as Catalysts for the Decontamination of Ecosystems and Detoxification of Organic Chemicals

Roland H. Muller, UFZ Centre for Environmental Research, Germany
Wolfgang Babel, UFZ-Centre for Environmental Research, Germany

1. Introduction
2. Key Reactions of Microbially Mediated Degradation of Organics
3. Modes of Microbially Mediated Detoxification of Organics
 3.1. Detoxification by Productive Degradation (Detoxification of Potential Growth Substrates)
 3.2. Detoxification by Non-Productive Conversion (Detoxification of Non-Growth Substrates)
4. Approaches to Increasing Efficiency and Velocity of Detoxification of Organics
 4.1. The Auxiliary Substrate Concept
 4.2. The Principle of Start Assistance
 4.3. Defined Mixed Cultures
5. Concluding Remarks

Biohydrometallurgy
Fernando Acevedo, Catholic University of Valparafso, Chile

1. Introduction
 1.1. General
 1.2. Historical Development
 1.3. The Future of Biomining Technologies
2. Microbiology of Biomining Processes
 2.1. Leaching Bacteria
 2.2. Leaching Mechanisms
 2.3. Kinetics of Ferrous Ion Oxidation
3. Effect of Operation Variables
 3.1. Nutrients and Inhibitors
 3.2. Gaseous Nutrients
 3.3. Effect of Temperature and pH
 3.4. Mineral Composition and Particle Size
 3.5. Operation Mode
4. Bioleaching of Copper
 4.1. Copper Mining
 4.2. Copper Bio-Mining
5. Bio-Oxidation of Gold Ores
 5.1. Gold Mining
 5.2. The Bio-Oxidation Process

Biodegradation of Xenobiotics
Susanne Fetzner, Universitaet Muenster, Germany

1. Introduction: General Features of the Microbial Degradation of Xenobiotics
 1.1. Biodegradation, Biotransformation, and Co-metabolism
 1.2. What are Xenobiotics?
 1.3. Parameters Influencing Bioavailability and the Rate of Biodegradation
2. Polycyclic Aromatic Hydrocarbons
3. Halogenated Hydrocarbons
 3.1. Haloaliphatic Compounds
 3.1.1. Aerobic Biodegradation
 3.1.2. Anaerobic Biodegradation
 3.2. Haloaromatic Compounds
 3.2.1. Aerobic Biodegradation
 3.2.2. Anaerobic Biodegradation
4. Nitroaromatic Compounds
 4.1. Aerobic Biodegradation
 4.2. Anaerobic Biodegradation
5. Azo Compounds
6. s-Triazines
7. Organic Sulfonic Acids
8. Synthetic Polymers
9. Conclusions

Sustainable Aquaculture: Concept or Practice
William A. Wurts, University of Kentucky Research & Education Center, USA

1. Sustainability
2. The Origins and Evolution of Aquaculture
3. Green and Blue Revolutions
4. Sustainable Aquaculture Practices
5. Dynamics of Intensive Culture Ponds
6. Reduced Stocking and Feeding
7. Harvesting Plankton to Recycle Nutrients and Improve Sustainability
8. Economic and Social Considerations
9. Managing Global Ecosystems

Biogas as Renewable Energy from Organic Waste
Amrit B. Karki, Yahoda Sustainable Development (P) Ltd, Nepal

1. Introduction
2. Biomass Waste
 2.1. Plant Waste
 2.2. Animal Waste
 2.3. Human Waste
3. Energy Production Using Anaerobic Digestion Technology
 3.1. Biogas Technology
 3.2. Biogas Potential
 3.3. Characteristic and Composition of Biogas
 3.4. Designs of Anaerobic Reactors
 3.4.1. Floating Drum Digester
 3.4.2. Fixed Dome Digester
 3.4.3. Deenbandhu Model
 3.4.4. Bag Digester
 3.4.5. Plug Flow Digester
 3.4.6. Anaerobic Filter
 3.4.7. Up-flow Anaerobic Sludge Blanket (UASB)
 3.5. Conditions for Anaerobic Fermentation
 3.5.1. Temperature
 3.5.2. pH
 3.5.3. Dilution
 3.5.4. Necessary Elements and C/N Ratio
 3.5.5. Loading Rate
 3.5.6. Detention Time
 3.6. Process of Anaerobic Fermentation for Methane Generation
 3.6.1. Hydrolysis
 3.6.2. Acid Formation
 3.6.3. Methane Formation
 3.7. Use of Biogas
 3.7.1. Lighting
 3.7.2. Cooking
 3.7.3. Other Uses of Biogas
 3.8. Implications of Biogas System
4. Energy from Garbage and Municipal Solid Waste
 4.1. Concept and Options for Treating the Municipal Solid Waste
 4.2. Anaerobic digestion of municipal solid waste [MSW]
 4.2.1. Demonstration of Biogas Plant for Treating MSW Experimented at Knudmosevaerket in Denmark
4.2.2. Technical Data Regarding Proposed Banepa Municipality Biogas Plant in Nepal

5. Energy from Human and/or Animal Waste: Case Studies

5.1. Latrine-attached Bio-digesters

5.1.1. Objectives

5.1.2. Installation, Operation and Use of Community Latrines-cum Bio-digester

5.1.3. Use of Gas and Digested Effluent

5.1.4. Sustainability of the Programme

5.2.1. Background

5.2.2. Objectives and Scope

5.2.3. Raw Materials

5.2.4. Installations of latrines-cum-Bio-digester

5.2.5. Operation of Bio-digester

5.3. Bio-digester fed with Sewerage, Kitchen Waste and Lawn Grasses

5.3.1. Background

5.3.2. Objectives and Scope

5.3.3. Installation of Bio-digester

5.3.4. Raw Materials

5.3.5. Operation of Bio-digester

5.3.6. Saving of Energy and Money from Biogas installation

Biodiversity: The Impact of Biotechnology

Richard Braun, Switzerland

Klaus Ammann, University of Bern, Switzerland

1. Introduction

2. The Essence of Biodiversity
 2.1. Native biodiversity
 2.2. Agricultural biodiversity
 2.3. Human population expansion

3. International agreements
 3.1. The Convention on Biological Diversity (CBD)
 3.2. The Cartagena Protocol on Biosafety
 3.3. Ethics
 3.4. Economics

4. Loss of biodiversity and conservation
 4.1. Reduction of biodiversity
 4.2. Conservation Strategies

5. Applications of biotechnology and its effect on biodiversity
 5.1. Biotechnology for the acquisition of knowledge
 5.2. Direct gene transfer to crops and farm animals
 5.3. Native Biodiversity and Biotechnology
 5.4. Agricultural Biodiversity and Biotechnology

6. Social consequences
 6.1. Economic considerations
 6.2. Ethical Considerations
 6.3. A brief case study: Biotechnology in India

Biotechnology in the Environment: Potential Effects on Biodiversity

Anna R. Hope, English Nature, UK

Brian R. Johnson, English Nature, UK

1. Introduction
 1.1. Agriculture and biodiversity
 1.2. Background to crop breeding
1.3. Traditional breeding versus genetic engineering
2. Defining ecological risk
 2.1. Framework for ecological risk assessment
 2.1.1. Ecological risks from transgenic crops
 2.1.2. Defining ecological harm
 2.2. The Precautionary Principle
 2.3. Post release monitoring
3. Direct risks of transgenic crops
 3.1. Ecological interactions
 3.1.1. The agricultural ecosystem
 3.1.2. Non-agricultural ecosystems
 3.2. Risks to biodiversity
 3.2.1. Altered toxicity
 3.2.1.1. Impacts on non-target organisms
 3.2.1.2. Target pest resurgence following development of resistant populations
 3.2.2. Gene flow
 3.2.2.1. Behaviour of transgenes in plants
 3.2.2.2. Behaviour of transgenes in other organisms
 3.3. Management of direct risks
4. Indirect risks of GM crops
 4.1. Impacts of changed agricultural practice on biodiversity
 4.1.1. Links between crops and wildlife - the natural warning system
 4.2. Other indirect impacts on biodiversity
 4.3. Management of indirect risks
5. Ecological risks and sustainability

Bioremediation: an Overview
Maurizio Vidali, Universita di Padova Via Loredan, Italy

1. Introduction
2. Principles of Bioremediation
3. Factors of Bioremediation
4. Microbial Population for Bioremediation Processes
5. Environmental Factors
 5.1. Nutrients
 5.2. Environmental requirements
6. Bioremediation Strategies
 6.1. In situ bioremediation
 6.2. Ex situ bioremediation
 6.3. Advantages of bioremediation
 6.4. Disadvantages of bioremediation
7. Phytoremediation

Microbial Resource Management: The Road to Go for Environmental Biotechnology
P. De Vos, Ghent University, Belgium
B. Vanparys, Ghent University, Belgium
K. Heylen, Ghent University, Belgium
N. Boon, Ghent University, Belgium
T. van de Wiele, Ghent University, Belgium
L. Wittebolle, Ghent University, Belgium
Willy Verstraete, Ghent University, Belgium

1. Introduction
2. Microbial Resources: "quoi de neuf ?" (What is new ?)
3. Microbial Resource Management (MRM)
 3.1. Three key strategies in MRM
3.2. Three missing links in MRM
3.3. Four Paradigms about Microbial Interactions
3.4. MRM in Practice

4. Exciting new potentials of MRM in Relation to the Super Challenges
 4.1. Climate Change
 4.2. Energy Supply
 4.3. Health and Disease
 4.4. Sustainable Environment
 4.4.1. Plant growth
 4.4.2. Biofilms/Bio-Aggregation Engineering
 4.4.3. New Catalysis
 4.4.4. The Mineral Cycles

5. Conclusions

Appropriate And Inappropriate Biotechnology For Developing Countries 358
E.R. Ørskov, Macaulay Institute, Craigiebucker, Aberdeen AB15 8QH, UK

1. Introduction
2. Which type of Biotechnology may be appropriate
 2.1. Inappropriate Biotechnology – GM crops
 2.2. Appropriate Biotechnology – Complementary Multi-cropping

Index 365

About EOLSS 371