CONTENTS

VOLUME XI

Bio-Cultural Diversity and Medicine 1
Edgar J. DaSilva, International Scientific Council for Island Development, France
Pier Giovanni d'Ayala, Secretary-General, INSULA
Murukesan V. Krishnapillai, College of Micronesia-FSM, Colonia, Yap, Federated States of Micronesia

1. Introduction
2. Biocultural diversity
 2.1. Africa
 2.2. Arab States
 2.3. Asia
 2.4. Europe
 2.5. Latin America and the Caribbean
 2.6. The Pacific Region
3. Socio-economic Diversity
 3.1. Africa
 3.2. Arab States
 3.3. Asia
 3.4. Europe
 3.5. Latin America and the Caribbean
 3.6. The Pacific Region
4. Conclusion

Blood: The Essence of Humanity 31
Sunil J. Parekh, Hematology Laboratory, India
Shilpa Mehta, Hematology Laboratory, India
Edgar J. DaSilva, International Scientific Council for Island Development, France

1. Introduction
2. Blood Composition and Functions
 2.1. Red Blood Cells (Erythrocytes)
 2.2. White Blood Cells (Leukocytes)
 2.3. Platelets (Thrombocytes)
 2.4. Plasma
 2.5. Blood Components in Diagnosis of Diseases
3. Blood Groups
 3.1. Blood group systems
 3.2. ABO and Rh Blood Group System
 3.3. ABO and Rh Grouping Methods
 3.3.1. Forward Grouping
 3.3.2. Reverse Grouping
 3.3.3. Cross Matching
 3.3.4. Direct Coombs (Antiglobulin) Test (DCT)
 3.3.5. Indirect Coombs (Antiglobulin) Test (ICT)
4. Blood Transfusion - Safety and Transmission of Diseases
 4.1. Safety in Blood Transfusion
 4.2. Pre-donation considerations
 4.3. Adverse Effects of Blood Transfusion
 4.3.1. Transfusion Reactions
 4.3.2. Transfusion-Associated Graft versus Host Disease (TA-GvHD)
 4.3.3. Transfusion-Related Acute Lung Injury (TRALI)
 4.4. Blood Component Therapy
4.4.1. Collection of Blood for Transfusion
4.4.2. Preparation of red cells
4.4.3. Preparation of plasma
4.4.4. Preparation of cryoprecipitate
4.4.5. Preparation of platelet concentrate
4.4.6. Preparation of apheresis platelets
4.4.7. Plasma derivatives

4.5. Blood doping

5. Red Cell Indices and Morphology in Disease Diagnosis
5.1. Red Cell Indices
5.2. Morphology of Red Cells
 5.2.1. Size
 5.2.2. Shape
 5.2.3. Color
 5.2.4. Inclusions
 5.2.5. Nucleated Red Cells
5.3. Red Cell Indices in Diagnosis
5.4. Reticulocytes and their Importance

6. Anemias
6.1. Iron Deficiency Anemia
 6.1.1. Stages of Iron Deficiency
 6.1.2. Causes of Iron deficiency are:
 6.1.3. Symptoms and Signs of Iron deficiency are:
 6.1.4. Treatment of Iron deficiency
6.2. Thalassemias
6.3. Sickle Cell Anemia
6.4. Sideroblastic Anemia
6.5. Megaloblastic Anemia
6.6. Hemolytic Anemias
6.7. G6PD Deficiency

7. Leukemias
7.1. Acute Leukemias
 7.1.1. Acute myeloid leukemia (AML)
 7.1.2. Acute lymphoid leukemia (ALL)
 7.1.3. Clinical Features in AML and ALL
7.2. Chronic Leukemias
 7.2.1. Clinical features in CML and CLL
 7.2.2. Hairy Cell Leukemia (HCL)

8. Bleeding and Clotting Disorders
8.1. Bleeding Disorders
 8.1.1. Hemophilia
 8.1.2. Von Willebrands Disease (vWD)
8.2. Clotting Disorders

9. Blood Parasites
9.1. Malaria
 9.1.1. Types of Malaria
 9.1.2. Life Cycle of Malarial Parasite
 9.1.3. Clinical Features of Malaria
 9.1.4. Complications of Plasmodium Infections
9.2. Filariasis
9.3. Kala-Azar
9.4. Trypanosomiasis

10. Blood Substitutes
10.1. Red blood cell substitutes

11. Blood and the Arts

12. Conclusion
1. Introduction
2. Classes of fungi that are of Medical Interest
 2.1. Basidiomycetes
 2.2. Zygomycetes
 2.3. Ascomycetes
 2.4. Mitosporic fungi (Fungi imperfecti)
 2.4.1. Blastomycetes
 2.4.2. Coelomycetes
 2.4.3. Hyphomycetes
3. Clinical groupings of fungal infections
 3.1. Superficial infections
 3.1.1. Pityriasis versicolor
 3.1.2. Tinea nigra
 3.1.3. Black piedra
 3.1.4. White piedra
 3.2. Cutaneous infections
 3.2.1. Dermatophytosis (Ringworm and Tinea)
 3.2.1.1. Tinea capitis
 3.2.1.2. Tinea corporis
 3.2.1.3. Tinea cruris
 3.2.1.4. Tinea pedis
 3.2.1.5. Tinea manuum
 3.2.1.6. Tinea unguium
 3.2.2. Thrush
 4. Subcutaneous infections
 4.1. Chromoblastomycosis
 4.2. Eumycotic Mycetoma
 4.3. Phaeohyphomycosis
 4.4. Hyalohyphomycosis
 4.5. Sporotrichosis
 4.6. Subcutaneous Zygomycosis
 4.6.1. Mucormycosis
 4.6.2. Entomophthoromycosis
 5. Systemic infections
 5.1. Aspergillosis
 5.2. Cryptococcosis
 5.3. Zygomycosis
 5.4. Candidiasis
 5.5. Pseudallescheriasis
 5.6. Histoplasmosis
 5.7. Blastomycosis
 5.8. Coccidiomycosis
 5.9. Paracoccidiomycosis
 6. Miscellaneous fungal or fungal-like diseases
 6.1. Rhinosporidiosis
 6.2. Lobomycosis
 6.3. Protothecosis
 6.4. Pythiosis
 7. Antifungal Therapy
 7.1. Commonly used Antifungal agents
 7.1.1. Amphotericin B
 7.1.2. Fluconazole
 7.1.3. Itraconazole
 7.1.4. Voriconazole
 7.1.5. Posaconazole
7.1.6. Caspofungin
7.1.7. Nystatin
7.1.8. Terbinafine and antifungals containing the 'allyl' group
7.1.9. Topical antifungals

7.2. In vitro Sensitivity Testing Procedures

8. Identification of fungi- The Classical Approach to Fungal Identification
8.1. The steps involved in identifying a microfungus
8.1.1. Macroscopic inspection after isolation on relevant media
8.1.1.1. Yeasts
8.1.1.2. Moulds
8.1.2. Microscopic inspection

9. Serological testing

Lysine Biosynthesis In Bacteria – An Unchartered Pathway For Novel Antibiotic Design
Con Dogovski, Sarah C. Atkinson, Sudhir R. Dommaraju, Renwick C. J. Dobson, and Matthew A. Perugini, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
Lilian Hor, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
Craig A. Huton, School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
Juliet A. Gerrard, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

1. Introduction
2. Lysine Biosynthesis Pathway in Bacteria
3. Identification and Validation of Targets
4. Dihydrodipicolinate Synthase [DHDPS]
 4.1. Function of DHDPS
 4.2. Structure of DHDPS
 4.3. Inhibition of DHDPS
5. Dihydrodipicolinate Reductase [DHDPR]
 5.1. Function of DHDPR
 5.2. Structure of DHDPR
 5.3. Inhibition of DHDPR
6. Diaminopimelate (DAP) Epimerase
 6.1. Function of DAP epimerase
 6.2. Structure of DAP epimerase
 6.3. Inhibition of DAP epimerase
7. Conclusions

Antibody Based Protein Research In Human Pathology
C. Gulmann, C. Buckley, Departments of Histopathology, Beaumont Hospital, Dublin, Ireland
R. Cummins, Royal College of Surgeons, Dublin, Ireland

1. Introduction
 1.1. Antigen-Antibody Interactions
2. Routine Antibody Based Methods in Pathology
 2.1. Immunohistochemistry in Histological Material
 2.1.1. Principles and History
 2.1.2. Antibodies
 2.1.3. Blocking Non-Specific Background
 2.1.4. Detection Systems
 2.1.5. Tissue Fixation, Processing and Antigen Retrieval
 2.2. Flow Cytometry
2.3. Fluorescent Techniques
 2.3.1. Immunofluorescence
 2.3.2. ELISA
3. Novel Protein Investigation Techniques
 3.1. Protein Array Techniques
 3.1.1. Antibody Arrays
 3.1.2. ‘Reverse Phase Arrays’
 3.2. Ancillary Methods in Protein Arrays
 3.2.1. Antibody Validation
 3.2.2. Tissue Microdissection
 3.2.3. Large Scale Validation – The Role of Tissue Microarrays
 3.2.4. Data Analysis of Large Data Sets
4. Problems in Antibody Based Methods
 4.1. Procurement of ‘Specific’ Antibodies
 4.2. Standardisation
 4.3. Increasing Throughputness
5. Conclusions

Integrated Thermo-Biorefinery
Michael Theroux, Theroux Environmental, California, USA

1. Introduction
2. Priorities of Waste Management and Resource Recovery
3. Secondary Recycling via Thermal Recovery
4. Feedstock Considerations
5. Thermal Technology Energetics
 5.1. Pre-combustion physical reaction stage
 5.2. Mass-burn incineration
 5.3. Devolatilization
 5.3.1. Primary stage pyrolysis
 5.3.2. Secondary stage pyrolysis
 5.4. Gasification
 5.4.1. Allothermal gasification
 5.4.2. Autothermal gasification
 5.5. Plasma gasification
 5.6. Reforming
6. Optimal Thermo-Biorefinery Campus Design
 6.1. Heat-first design
 6.2. Electricity-first design
 6.3. Combined heat and power (CHP)
 6.4. Biofuel-first design
 6.5. CCHP + Fuels
 6.6. The case for multi-path, multi-technology integration
7. Establishing a "Bright Line"
8. External Technology Validation
9. Conclusion

The Role of Phytobiotechnology in Public Health
Kenneth Anchang Yongabi, Phytobiotechnology Research Foundation and Clinic, Bamenda, Cameroon

1. Introduction: The Concept of Medicinal Plants and Phytobiotechnology
2. A Recap of Infectiology and Contemporary Challenges in the Control of Infectious Diseases
 2.1. Challenges involved in Controlling Infectious Diseases
 2.2. Synthetic Antibiotics in Health Care and their Shortfalls
 2.3. Applications of Medicinal Plant Biotechnology in the Control of Leishmaniasis and Dracunculiasis, Case Study: Northern Nigeria
2.4. Medicinal Plants and Medicinal Plant Biotechnology in the Control of Mosquitoes (Anopheles) and Homeflies (Musca Domestica) in the Tropics
3. Medicinal Plants and Macrofungi in Control of Fungal Infections and Other Dermatological Problems
4. Employing Appropriate Medicinal Plant Biotechnology in the Management of HIV/AIDS And Cancer
 4.1. Role of Medicinal Plant Biotechnology in the Treatment of Cardiac and Neurological, Central Nervous System Disorder, Rheumatic Arthritis Etc
 4.2. Management Of Hepatitis, Cancers And Autoimmune Disorders Using Medicinal Plant Extracts
5. Medicinal Plant Biotechnology in Preventive Health
 5.1. Exploiting the Potentials of African Medicinal Plants and Indigenous Knowledge in Environmental Sanitation and Hygiene: Water Purification With Phytocoagulants
 5.2. A Preliminary Study on Disinfection of Fresh Human Excrements with Medicinal Plant Seeds, Kerosene and Saw Dust
6. Conclusions

Medical Biotechnology—Modern Development
Tan Min Chin, National University Hospital, Singapore
Felicia Su Wei Teo, Singapore General Hospital, Singapore
Li Yang Hsu, National University Hospital, Singapore

1. Introduction
2. Diagnostics
 2.1. Nucleic Acid Tests
 2.1.1. Role in Infectious Diseases
 2.1.2. Role in Cancer
 2.1.3. Prenatal Screening and Pre-implantation Genetic Diagnosis
 2.2. Monoclonal Antibodies
 2.3. Proteomics for Diagnostics
 2.4. Nanodiagnostics
3. Therapeutics
 3.1. rDNA Drugs and Vaccines
 3.1.1. Bio-factories
 3.1.2. Efficacy and Adverse Effects
 3.2. Gene Therapy
 3.2.1. History and Development
 3.2.2. Barriers
 3.3. Stem Cells
 3.4. Rational Drug Design
4. Economics and Industry Trends
 4.1. Medical Biotechnology Market
 4.2. Industry Strategies
 4.3. Financing
 4.4. Market Forces and Beneficiaries
5. Regulation
 5.1. Drug Approval
 5.2. Research Regulation and Patents
6. Social Issues and Ethics
 6.1. Stem Cell Research
 6.2. Cloning
 6.3. Genetic Testing and Therapy
 6.4. Genetic Databases
 6.5. Health Inequities
7. Conclusion
Bioinformatics on Post Genomic Era—> From Genomes to Systems Biology

Mauno Vihinen, *University of Tampere, Finland*

1. Introduction
 1.1. Implications of Genomes
2. Bioinformatics and Internet
3. Genomes
4. Databases
 4.1. Annotation
 4.2. Gene ontologies
 4.3. Data Mining
5. Sequence Alignment
6. Common Sequence Analysis Methods
 6.1. Gene Finding
 6.2. Mapping
 6.3. DNA/RNA Secondary Structure
 6.4. Primer Selection
 6.5. Translation
 6.6. Protein Analysis
 6.7. Pattern Searches
7. Functional Genomics
 7.1. Gene and Protein Expression
8. Protein Structure Predictions
9. Systems biology
10. Trends and Prospects

Gene Therapy

Mikko Laukkanen, *University of Kuopio, Finland*
Pauliina Lehtolainen, *University of Kuopio, Finland*
Seppo Yia-herttuala, *University of Kuopio, Finland*

1. Introduction
2. Vectors for Gene Transfer
 2.1. Non-viral Vectors
 2.2. Viral Vectors
 2.2.1. Adenoviral Vectors
 2.2.2. Retroviral and Lentiviral Vectors
 2.2.3. Adeno-associated Viral Vectors
 2.2.4. Other Viral Vectors
 2.2.5. Replicating Viral Vectors
3. Gene Delivery
 3.1. Ex Vivo Delivery
 3.2. In Vivo Delivery
 3.3. Pre-clinical Gene Therapy Experiments
4. Clinical Applications of Gene Therapy

Tissue Engineering: Advances in Organ Replacement

Kevin Shakesheff, *University of Nottingham, UK*
Andrew Lewis, *University of Nottingham, UK*
Lisa Riccalton-Banks, *RegenTec Ltd, UK*

1. Introduction
2. The Skin
3. The Liver
4. Kidney
 4.1. The Bioartificial Kidney
4.2. Tissue Engineering a Kidney
5. Bone
6. Blood Vessels
7. Skeletal Muscle
8. The Bladder
9. Nerve
10. Articular Cartilage
11. The Cornea

The Nanostructure of the Nervous System and the Impact of Nanotechnology on Neuroscience 298
Gabriel A. Silva, University of California, California

1. Introduction
2. The Micro- and Nanoscale Structure of the Central Nervous System (CNS)
 2.1. The organization of the CNS
 2.2. The cellular and molecular structure of the CNS
 2.3. Membrane proteins and receptors
 2.4. Example of the nanoengineered CNS: Self-assembly of the presynaptic particle web
3. Synthetic and Engineering Methods in Nanotechnology
4. Applications of Nanoengineering and Nanotechnology to the CNS
 4.1. Applications to Basic Neuroscience
 4.2. Applications to Clinical Neuroscience
5. Challenges Associated with Nanotechnology Applications to the CNS
6. Conclusions
7. Acknowledgements

Index 321

About EOLSS 329