1. Introduction
2. Biological Control
3. Microbial Insecticides
 3.1 Bacillus thuringiensis
 3.1.1 General Overview
 3.1.2 Mode of Action
 3.2 Bacillus Thuringiensis Var. kurstaki
 3.3 Bacillus Popilliae and Bacillus Lentimorbus
 3.4 Bacillus Thuringiensis H-14
 3.5 Bacillus Sphaericus
4. Production of Bacillus Thuringiensis and Bacillus Sphaericus
 4.1 Culture Maintenance and Preservation
 4.1.1 Liquids
 4.1.2 Materials of Plant Origin
 4.1.3 Materials of Animal (nonmammalian) Origin
 4.1.4 Materials of Mammalian Origin
 4.1.5 Minerals
 4.2 Fermentation
 4.3 Recovery Process
 4.4 Formulation and Storage
 4.5 Bioassay Protocol for Bacillus Thuringiensis and Bacillus Sphaericus Preparations
 4.5.1 Standard Bacterial Preparation
 4.5.2 Assay Species
 4.5.3 Preparation and Reading of the Bioassay
 4.5.4 Calculation of Potency in International Units (IU)
 4.6 Bioassay Protocol for Bacillus thuringiensis H-14 Preparations
 4.6.1 Standard Bacterial Preparation
 4.6.2 Assay Species
 4.6.3 Calculation of Potency in International Units (IU)
 4.7 Safety and Quality Control
 4.7.1 Chemical Contamination
 4.7.2 Microbial Contamination
 4.8 Packaging and Distribution
5. Entomopathogenic Viruses
 5.1 General Overview
 5.2 Baculoviruses (Baculoviridae)
 5.2.1 Life Cycle
 5.2.2 Relative Effectiveness
 5.2.3 Appearance
 5.2.4 Habitat
 5.2.5 Current use of Baculoviruses as Insecticides
6. Entomopathogenic Fungi
 6.1 Formation of an Infection Structure
 6.2 Penetration of the Cuticle
 6.3 Production of Toxins
 6.4 Mode of Action
 6.5 Lagenidium Giganteum
 6.6 Verticillium Lecanii
7. Biopesticide Production
Secondary Products from Plant Tissue Cultures
James C. Linden, University of Colorado, USA

1. Diversity and potential of plant cell culture
2. Regulation of production through elicitation and induction
 2.1 β–glucans
 2.2 Ethylene
 2.3 Methyl jasmonate
 2.4 Interactions between elicitors and signals
3. Preliminary economics of using plant cell culture for secondary metabolite production
4. Limitations/opportunities for marketing plant cell culture products
5. The future for secondary products from plant tissue culture

Industrial Mycology
Stefan Rokem, The Hebrew University of Jerusalem, Israel

1. Introduction
2. Product range
 2.1 Metabolites
 2.2 Enzymes
 2.3 Biomass
 2.4 More recent and potential products
3. Solid State Fermentation
 3.1 Products from Solid State Fermentation
 3.1.1 Gibberellic acid – GA₃
 3.1.2 Glucoamylase
4. Submerged Fermentation
 4.1 Selected metabolites produced by Submerged Fermentation
 4.1.1 Lovastatin
 4.1.2 Red Monascus Pigments
 4.1.3 Rennet (Chymosin) from Mucor
 4.1.4 Quorn®
5. Other Developments of Industrial Mycology
 5.1 Heterologous Proteins by Filamentous Fungi
 5.2 Flavoring Agents
 5.3 Cheese Made with Fungi
 5.4 Higher Fungi for Food Flavor and Medicine
6. Conclusions

Biobutanol
D. T. Jones, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

1. Introduction
2. Biobutanol
 2.1 Properties of Biobutanol as a Liquid Transportation Fuel
2.2. Energy Content
2.3. Octane Rating and Vapour Pressure
2.4. Water Tolerance
2.5. Compatibility with Existing Internal Combustion Engines
2.6. Co-blending Features
2.7. Handling and Distribution Advantages
2.8. Synergies with Bioethanol and Biodiesel
2.9. Feedstock Flexibility and Agricultural Benefits
2.10. Environmental Benefits
3. Development of the Industrial ABE Fermentation Process
3.1. Origins and Early History
3.2. The Development of the Commercial Fermentation Industry
3.3. The Rise and Decline of the Commercial ABE Fermentation Process
4. The Commercial ABE Fermentation Process
4.1. Raw Materials
4.2. Microorganisms Seed Cultures and Inoculum Procedures
4.3. The Starched-based Batch Fermentation Process
4.4. The sugar-based Batch Fermentation Process
4.5. Product Recovery Processing and Usage
5. Limitations of the Industrial ABE Fermentation Process
5.1. Complex Two Phase Batch Fermentation
5.2. Solvent Yields and Ratios
5.3. Butanol Toxicity and Low Final Solvent Concentrations
5.4. Susceptibility to Contamination and the Requirement for Sterility
5.5. Low Value By-products and Effluent Disposal
5.6. Culture and Strain Stability and Reliability
5.7. Negative features of bulk chemical production by fermentations
6. Economic Perspectives
6.1. Economics of the Conventional Batch ABE Fermentation Process
6.2. The Solvent Market
6.3. The Biofuels Market
7. Advances in Scientific Know-how
7.1. Strain Development and Improvement
7.2. Genetic Engineering
7.3. Metabolic Engineering
7.4. Alternative Production Systems
8. Advances in Process Technology
8.1. Continuous Culture Systems
8.2. Solvent Extraction and Recovery Processes
8.3. Continuous Fermentation and Solvent Removal Systems
9. Utilization of Lignocellulosic Substrates
9.1. Concerns Relating to Use of Food Crops for Biofuel Production
9.2. Use of Alternative Substrates for the ABE Fermentation
9.3. Physical and Chemical Degradation Technologies
9.4. Genetic Manipulation
10. Conclusions and Future Prospects

Industrial Use of Enzymes
Michele Vitolo, Brazil

1. Introduction
2. Sources of Enzymes
3. Enzyme Production
3.1. An Overview on Downstream Processing
 3.1.1. Filtration
 3.1.2. Centrifugation and Sedimentation
 3.1.3. Flocculation and Coagulation
3.1.4. Cell Disruption
3.1.5. Extraction
3.1.6. Precipitation
3.1.7. Chromatography
3.1.8. Finishing Operations
 3.1.8.1. Crystallization
 3.1.8.2. Drying
 3.1.8.3. Formulation
3.1.8.4. Some Aspects on Safety in Handling Enzymes
3.1.9. Invertase Production: As a Case

4. Fundamentals on Enzyme Kinetic
 4.1. Introduction
 4.2. Specificity
 4.3. Enzyme Activity
 4.3.1. Quantification of the Enzyme Activity
 4.3.2. Expression of the Enzyme Activity
 4.3.3. Factors Affecting the Enzyme Activity
 4.3.3.1. Physical-Chemical factors
 4.3.3.1.1. Ph
 4.3.3.1.2. Temperature
 4.3.3.1.3. Miscellaneous
 4.3.3.2. Chemical Factors
 4.3.3.2.1. Activators
 4.3.3.2.2. Stabilizers
 4.3.3.2.3. Inhibitors
 4.3.3.3. Physical Factors
 4.3.4. Briefing on Thermodynamic of the Enzyme catalysis
 4.3.5. An Overview on Enzyme Immobilization

5. A Briefing on the Uses of Enzymes
 5.1. Baking
 5.2. Starch Conversion
 5.3. Protein Modification with Enzymes
 5.3.1. Introduction
 5.3.2. Brewing
 5.3.3. Dairy Industry
 5.3.4. Miscellaneous uses of Proteolytic Enzymes
 5.4. Enzymes in Fruit Juices
 5.5. Miscellaneous
 5.5.1. Detergents
 5.5.2. Effluent and Waste Treatments
 5.5.3. Flavor Production with Enzymes
 5.5.4. Leather
 5.5.5. Textiles
 5.5.6. Pulp and Paper
 5.5.7. Edible Oils
 5.5.8. Enzymes in Animal Feeding
 5.5.9. Enzymes as Analytical Tools
 5.5.10. Enzymes as Medicines
 5.5.11. Enzymatic Biotransformations

6. Conclusion

Production of Heterologous Hydrolysis Enzymes within Crop Biomass for Biofuel Ethanol

Mariam B. Sticklen, Michigan State University, USA
Callista Ransom, Michigan State University, USA

1. Introduction
2. The Plant Cell Wall
2.1 Cell wall components
 2.1.1 Cellulose
 2.1.2 Cross-linking glycans
 2.1.3 Pectins and other substances
 2.1.4 Lignin

2.2 Two major types of primary cell walls

3. Cell wall degradation
 3.1 Microorganisms
 3.2 Hydrolysis
 3.2.1 Cellulases
 3.2.2 Hemicellulases
 3.2.3 Ligninases

4. Ethanol production
 4.1 Maize grain ethanol production
 4.2 The promise of cellulosic ethanol
 4.2.1 Cellulosic ethanol production
 4.2.2 Challenges to cellulosic ethanol production

5. Production of Hydrolysis Enzymes in Biomass Crops
 5.1 Plants as molecular biofactories
 5.2 Successful plant-produced hydrolysis enzymes
 5.3 TSP must be extracted prior to pretreatment
 5.4 Thermostable enzymes are desirable
 5.5 Subcellular targeting and sequestration

6. Other Approaches
 6.1 Microbial engineering
 6.2 Lignin pathway manipulation
 6.3 Up-regulation of cellulose pathway genes to increase sugar content
 6.4 Delayed flowering to increase biomass
 6.5 Genetic manipulation to increase biomass

7. Conclusion