CONTENTS

VOLUME VIII

Agricultural Biotechnology

James H.P. Kahindi, United States International University, Kenya Nancy K. Karanja, University of Nairobi, Kenya

- 1. Introduction
- 2. Microbial inoculation of plants
- 3. Recycling of organic wastes
- 4. Plant cell and tissue culture
- 5. Fermentation and enzyme technology
- 6. Transformation of plants and animals
- 7. Crop protection through pest resistance genes
- 8. Livestock-based biotechnologies
- 9. The economics of agro-biotechnology
- 10. The way forward

Fermented Foods and Their Processing

Nduka Okafor, Nnamdi Azikiwe University, Nigeria

- 1. Introduction
- 2. Fermented food from cereals
 - 2.1 Wheat
 - 2.1.1 Ingredients for Modern Bread-making
 - 2.1.2 Processes of Bread making
 - 2.1.3 Systems of baking
 - 2.1.4 Role of Yeasts in Bread making
 - 2.2 Maize and/or sorghum
 - 2.2.1 Ogi, koko, mahewu
 - 2.2.2 Koko
 - 2.2.3 Mahewu
- 3. Fermented foods from cassava
 - 3.1 Garri
 - 3.1.1 Preparation of Garri
 - 3.1.2 Microbiology of the fermentation of Garri
 - 3.1.3 Improvements in garri
- 3.2 Foo-foo, chikwuangue, lafun, kokonte and cinguada
- 4. Fermented Foods from Legumes
 - 4.1 Soybeans
 - 4.1.1 Soy sauce manufacture
 - 4.1.1.1 Soy sauce manufacture
 - 4.1.1.2 Flavor of soy sauce
 - 4.1.2 Miso
 - 4.1.2.1 Manufacture of Miso
 - 4.1.3 Natto (Fermented whole soybean)
 - 4.1.4 Sufu (Chinese soybean cheeses)
 - 4.1.4.1 Preparation of soy milk curd
 - 4.1.4.2 Molding Process
 - 4.1.4.3 Brining and Aging
 - 4.1.5 Tempeh
 - 4.2 Beans
 - 4.2.1 Idli
 - 4.2.1.1 Production of Idli

19

- 4.3 Production of Ugba
- 4.4 Production of Iru (Dawadawa)
- 4.5 Oncom (Ontjom)
- 4.6 Condiments from the Fermentation of Miscellaneous oil-seeds
- Fermented foods from vegetables
- 5.1 Sauerkraut

5.

- 5.2 Cucumbers [pickling]
- 6. Fermentations for the Production of Coffee, Tea and Cocoa
 - 6.1 Tea Production
 - 6.2 Coffee Fermentation
 - 6.2.1 Processing of coffee
 - 6.3 Cocoa Fermentation
- 7. Fermented foods made from milk
 - 7.1 Composition of milk
 - 7.2 Starter Cultures
 - 7.3 Fermented Milks including Yoghurt
 - 7.3.1 Acidophilus Milk
 - 7.3.2 Koumis
 - 7.3.3 Kefir
 - 7.3.4 Yoghurt
 - 7.4 Cheese
 - 7.4.1 Standardization of Milk
 - 7.4.1.1 Standardization of Milk
 - 7.4.1.2 Inoculation of pure cultures of lactic acid bacteria
 - 7.4.1.3 Problems of lactic acid bacteria in cheese-making
 - 7.4.1.4 Adding of rennet for coagulum formation
 - 7.4.1.5 Shrinkage of the curd
 - 7.4.1.6 Salting of the curd and pressing into shape
 - 7.4.1.7 Cheese ripening
 - 7.4.2 Types of cheeses
- 8. Fermented Food from alcohol
 - 8.1 Historic Development
 - 8.2 Types of Vinegar
 - 8.3 Vinegar production processes
 - 8.3.1 The Orleans (or slow) method
 - 8.3.2 The trickling generators (quick) method
 - 8.3.3 Submerged generators
 - 8.3.3.1 Advantages of the acetator over trickling generator
 - 8.3.3.2 Disadvantages
- 9. Food condiments made from fish
 - 9.1 Fish sauce
 - 9.2 Fish paste

Essentials of Nitrogen Fixation Biotechnology

James H.P. Kahindi, United States International University, Kenya Nancy K. Karanja, University of Nairobi, Kenya

- 1. Introduction
- 2. Crop Requirements for Nitrogen
- 3. Potential for Biological Nitrogen Fixation [BNF] SystemsMushrooms
- 4. Diversity of Rhizobia
 - 4.1 Factors Influencing Biological Nitrogen Fixation [BNF]
- 5. The Biochemistry of Biological Nitrogen Fixation: The Nitrogenase System
 - 5.1 The Molybdenum Nitrogenase System
 - 5.1.1 The Iron Protein (Fe protein)
 - 5.1.2 The MoFe Protein
 - 5.2 The Vanadium Nitrogenase

- 5.3 Nitrogenase-3
- 6. The Genetics of Nitrogen Fixation
 - 6.1 The Mo-nitrogenase Structural Genes (nif H,D,K)
 - 6.2 Genes for nitrogenase-2 (vnf H,D,G,K,vnfA,vnfE,N,X)
 - 6.3 Regulation of Nif Gene Expression
- 7. The Potential for Biological Nitrogen Fixation with Non-legumes
 - 7.1 Frankia
 - 7.2 Associative Nitrogen Fixation
- 8. Application of Biological Nitrogen Fixation Technology
 - 8.1 Experiences of the Biological Nitrogen Fixation –MIRCENs
 - 8.2 Priorities for Action

Crop Protection through Pest-Resistant Genes

Stanley Freeman, *The Volcani Center, Israel* Agnes W. Mwang'ombe, *University of Nairobi, Kenya*

- 1. Introduction
- 2. Mechanisms of Plant Defense
- 3. Insect resistance
 - 3.1 Bt d –endotoxins
 - 3.2 Other insecticidal proteins
- 4. Nematode resistance
- 5. Fungal and bacterial resistance
 - 5.1 Single component control strategies
 - 5.1.1 Thionins and Defensins
 - 5.1.2 Antimicrobial enzymes (PR proteins)
 - 5.1.3 Phytoalexins
 - 5.1.4 Ribosome-inactivating proteins (RIPs)
 - 5.1.5 Toxin degradation compounds
 - 5.2 Multiple component control strategies
 - 5.2.1 Disease resistance via R-genes
 - 5.2.2 Systemic acquired resistance (SAR)
- 6. Virus resistance
 - 6.1 Protein-mediated pathogen-derived resistance (PDR)
 - 6.2 Gene silencing
 - 6.3 Nonviral gene expression
- 7. Weed resistance

Composting Agricultural and Industrial Wastes

Graham J. Manderson, Massey University, New Zealand

- 1. Introduction
- 2. Defining Composting
 - 2.1 What is Composting?
 - 2.2 Compostable Materials
- 3. An Outline of the Composting Operation
 - 3.1 Process Considerations
 - 3.2 System Configuration
 - 3.3 Operating Conditions
 - 3.3.1 Temperature
 - 3.3.2 Pile Aeration
 - 3.3.3 Moisture
 - 3.3.4 Substrate
 - 3.3.5 Compost Mixture pH
 - 3.3.6 Odor and Its Control
 - 3.3.7 Process Additives

iii

- 3.4 The Mature Compost
- 4. Metabolic Processes in Aerobic Composting
- 5. Ecology of Compost Systems
 - 5.1 Microbial Populations
 - 5.1.1 Bacteria
 - 5.1.2 Fungi in the Maturing Compost
 - 5.2 Pathogens and Risks to Human Health
 - 5.2.1 Sources of Pathogens and their Inactivation
 - 5.2.2 Kinds of Primary Pathogens Present
 - 5.2.3 Opportunistic Pathogens and Allergens in Compost
 - Environmental Concerns
- 7. Conclusions

6.

Silage for Animal Feed

Leendert't Mannetje, Wageningen University, The Netherlands

- 1. Introduction
- 2. History of Silage Making
- 3. The Ensiling Process
 - 3.1. The Harvesting and Storage Phase
 - 3.2. The Aerobic Phase
 - 3.3. The Fermentation Phase
 - 3.4. The Stable Phase
 - 3.5. The Feed-out Phase
- 4. Silage Microflora
- 5. Silage Additives
- 6. Silage Quality
- 7. Properties of Common Forages and Crops for Ensilage
 - 7.1. Grasses
 - 7.2. Maize
 - 7.3. Legumes
 - 7.4. Whole Plant Silage
 - 7.5. Sorghum
- 8. Silage from Crop Residues and By-products

Transgenic Plants

Kathleen Laura Hefferon, Cornell University, USA

- 1. Introduction
- 2. Transformation of Plants
- 3. Herbicide and Disease-Resistant Crops
 - 3.1. Plant Virus-Resistant Crops
 - 3.1.1. Coat protein-mediated resistance
 - 3.1.2. Resistance conferred by other gene products
 - 3.2. Resistance Against Other Pathogens
 - 3.3. Resistance Against Insect Pathogens
 - 3.3.1. Transgenic crops expressing Bt toxin
 - 3.3.2. Transgenic crops expressing other insecticidal protein toxins
 - 3.4. Herbicide Resistant Transgenic Plants
- 4. Manufacturing Proteins in Plants
 - 4.1. Vaccines in Plants
 - 4.1.1. LT-B and CT-B
 - 4.1.2. Hepatitis B
 - 4.1.3. Norwalk Virus
 - 4.1.4. Foot and Mouth Disease Virus
 - 4.1.5. Transmissible Gastroenteritis Virus

131

- 4.2. The Use of Antibodies in Plants as Immunotherapeutic Agents
- 4.3. Biopharmaceuticals
- 5. Nutritional Enhancement of Plants (Nutriceuticals)
 - 5.1. Golden rice
 - 5.2. Other Nutritionally Enhanced Transgenic Plants
- 6. Transgenic Plants and Gene Silencing
- 7. Conclusions

Transgenic Technologies for Animals as Bioreactors

Xiangzhong (Jerry) Yang, University of Connecticut, USA Bin Wang, Nexia Biotechnologies, Inc., Canada

- 1. Introduction
- 2. Methods for Producing Transgenic Animals as Bioreactors
 - 2.1. Producing Transgenic Animals by Direct DNA Microinjection into Zygote Pronuclei
 - 2.2. Characteristics of Transgene Integration and the Mechanism of Mosaicism
 - 2.3. Methods to Improve Transgene Integration via Pronuclear DNA Microinjection
 - 2.4. Producing Transgenic Animals Through Nuclear Transfer of Somatic Cells
 - 2.5. Retrovirus Mediated Gene Transfer
 - 2.6. Sperm Mediated Gene Transfer
- 3. Control of Transgene Expression in Transgenic Animal Bioreactors
 - 3.1. Protein Production in the Mammary Gland
 - 3.2. Foreign Protein Expression in Urine
 - 3.3. Foreign Protein Production in Semen
 - 3.4. Considerations of Transgene Structure and Expression
- 4. Conclusions

Plant Breeding and Molecular Farming

Philip A. Davies, South Australian Research and Development Institute (SARDI), Australia

194

- 1. Introduction
- 2. Traditional Plant Breeding
- 3. Biotechnology in Plant Breeding
- 4. Products of Crop Genetic Engineering
 - 4.1. Improved Productivity
 - 4.1.1. Herbicide Resistance
 - 4.1.2. Insect Resistance
 - 4.1.3. Virus Resistance
 - 4.1.4. Fungus Resistance
 - 4.1.5. Bacterial Resistance
 - 4.1.6. Plant Physiological Traits
 - 4.1.7. Seed Sterilization Technology
 - 4.2. New and Modified Crop Products
 - 4.2.1. Modified Proteins and Amino Acids
 - 4.2.2. Modified Oils
 - 4.2.3. Post-harvest Quality
 - 4.2.4. Modified Flower Color and Patterns
 - 4.2.5. Industrial Polymers
 - 4.2.6. Medical Products
- 5. Potential Consequences of Crop Biotechnology and Genetic Engineering
 - 5.1. Effectiveness in Agriculture
 - 5.2. Gene Escape to Other Plants and Species
 - 5.3. Effect on Non-target Organisms
 - 5.4. Impact on Biodiversity
 - 5.5. Impact on Human Health
 - 5.6. Impact on Plant Breeding Strategies

5.7. Socioeconomic Impact

6. Risk Assessment

Biotechnology and Agrobiodiversity

Jan-Peter Nap, *Plant Research International, The Netherlands* Bert Visser, *Centre for Genetic Resources, The Netherlands*

- 1. Introduction
- 2. Technical aspects of agricultural biotechnology at the interface with agrobiodiversity
 - 2.1. In vitro technologies
 - 2.2. Genetic modification and the sourcing of genes
 - 2.3. Molecular marker technology
 - 2.4. Genomics and beyond
 - 2.5. The context of agricultural biotechnology
- 3. Agro-biodiversity as a source for biotechnological applications
- 4. Biotechnological tools in genetic resources management
 - 4.1. Conservation
 - 4.2. Utilization
- 5. Impact of biotechnology on agrobiodiversity
 - 5.1. Biological effects
 - 5.2. Socio-economic effects
 - 5.3. Nutritional and cultural effects

The Economics of Agrobiotechnology

Justus Wesseler, Agricultural and Environmental Resource Economist, The Netherlands

- 1. Introduction
- 2. Important Economic Aspects of Agrobiotechnology
 - 2.1. Research and Development Level
 - 2.2. Agriculture Sector Level
 - 2.3. Consumer Level
- 3. Methodological Approaches to Assess the Benefits and Costs of Agrobiotechnology
 - 3.1. Deterministic Models
 - 3.2. Stochastic Models
 - 3.2.1. Models with Stationary Stochastic Variables
 - 3.2.2. Models with Non-Stationary Stochastic Variables
- 4. Empirical Evidence
 - 4.1. Costs and Benefits of Agrobiotechnology
 - 4.2. Distribution of Benefits and Costs
- 5. Conclusions and Outlook

Conventional Plant Breeding for Higher Yields and Pest Resistance

Raoul A. Robinson, *Retired crop scientist, Canada* Roberto Garcia-Espinosa, *Colegio de Postgraduados en Ciencias Agricolas, México*

- 1. Introduction
- 2. Macro-Evolution and Micro-Evolution
- 3. Domestication
- 4. The Worldwide Redistribution of Plants
- 5. Stable and Unstable Protection Mechanisms
- 6. Quantitative and Qualitative Genetics
- 7. Quantitative (Horizontal) and Qualitative (Vertical) Resistance
- 8. The Gene-for-Gene Relationship
 - 8.1. A System of Locking
 - 8.2. The Natural Function of the Gene-For-Gene Relationship

235

250

vi

- 8.3. The Break Down of Resistance and the Boom and Bust Cycle of Plant Breeding
- 9. Vertical Resistance and Horizontal Resistance Compared
 - 9.1. Stability
 - 9.2. Space
 - 9.3. Profile
 - 9.4. Time
 - 9.5. Cultivars
- 10. Special Aspects of Horizontal Resistance
 - 10.1. A Second Line of Defense
 - 10.2. Horizontal Resistance is Useful
 - 10.3. Horizontal Resistance is Universal
 - 10.4. Horizontal Resistance is Durable
 - 10.5. The Erosion of Horizontal Resistance
 - 10.6. Breeding for Horizontal Resistance
 - 10.7. Transgressive Segregation
 - 10.8. On-Site Screening
 - 10.9. Cumulative Progress
 - 10.10.Plant Breeding Clubs
 - 10.11.Successes in Horizontal Resistance Breeding
- 11. Yield versus Resistance
- 12. The Nature of Plant Breeding
 - 12.1. Crop Uniformity
 - 12.2. The Methods of Conventional Plant Breeding
 - 12.3. Conventional Plant Breeding for Higher Yields, Quality, and Resistance
 - 12.4. Conventional Plant Breeding and Genetic Engineering
- 13. The Future of Conventional Plant Breeding
- 14. Complexity Theory

Transgenic Vegetable Crops For Managing Insect Pests and Fungal and Viral Diseases270Zamir K. Punja, Simon Fraser University, Canada270

- 1. Introduction
- 2. Genetic Engineering Technologies
 - 2.1. Tissue culture selection -
 - 2.2. Gene transfer technologies
 - 2.2.1. Agrobacterium-mediated transformation
 - 2.2.2. Direct methods for transformation
 - 2.2.2.1. Particle bombardment
 - 2.2.2.2. Protoplast-mediated transformation
 - Insect resistant vegetable crops
 - 3.1. Bacillus thuringiensis toxins
 - 3.2. Protease and α -amylase inhibitors
 - 3.3. Lectins

- 3.4. Chitinases
- 4. Virus-resistant vegetable crops
- 5. Fungal-resistant vegetable crops
 - 5.1. Hydrolytic enzymes
 - 5.2. Lysozymes
 - 5.3. Peptides
 - 5.4. Pathogenesis-related proteins
 - 5.5. Phytoalexins
 - 5.6. Hydrogen peroxide
 - 5.7. Inhibition of pathogen virulence products
 - 5.8. Alteration of structural components
 - 5.9. Engineered cell death
 - 5.10. Enhanced defense responses
 - 5.11. Reduced ethylene production

6. Issues to consider

7. Conclusions

Farmers and Plant Genetic Resources

Louise Sperling, International Center for Tropical Agriculture, Italy Nadine Saad, CGIAR Systemwide Program, Canada Jacqueline A. Ashby, CIAT, USA

- 1. Introduction
- 2. Why Plant Genetic Resources (PGR) Are Important to Farmers
- 3. How Farmers Manage and Use Plant Genetic Resources
 - 3.1. Varietal Choice
 - 3.2. Varietal Management, Recombinations, and Introductions
 - 3.3. Seed Selection Within Populations
 - 3.4. Storage
 - 3.5. Seed Exchange and Purchase
 - 3.6. Farmers' Breeding and Experimentation
 - 3.7. Farmer Knowledge of Varietal Traits
- 4. Advancing PGR with Farmers: Joining Formal and Informal Research
 - 4.1. Participatory Plant Breeding (PPB)
 - 4.2. Impact and Potential of Participatory Plant Breeding (PPB)
 - 4.3. Supporting Informal Seed Systems
 - 4.4. In Situ Conservation
- 5. Developments
 - 5.1. Biotechnology Experience and Promise
 - 5.2. Addressing Issues of Intellectual Property Rights
- 6. Conclusion

The Role of Plant Genomics in Biotechnology

A.Varma and N. Shrivastava, B. V. Patel Pharmaceutical Education & Research Development (PERD) centre, Sarkhej – Gandhinagar Highway, Thaltej

- 1. Understanding the ' plant genome'
 - 1.1. Extra Nuclear Genomes
 - 1.2. Structure, Size and Organization
 - 1.3. Synteny and Collinearity of Plant Genomes
- 2. The science of 'Genomics'
 - 2.1. Genome Sequences the Raw Material
 - 2.2. Structural and Functional Genomics
- 3. Arabidopsis Genome Sequence The signpost of plant genomics
 - 3.1. Arabidopsis will not feed the world
 - 3.2. The International Rice Genome Sequencing Project
- 4. Applying genomics to Agricultural Biotechnology
 - 4.1. Agrobiotechnology Contributions
 - 4.1.1. The Flavr Savr Tomato
 - 4.1.2. The Golden Rice
 - 4.1.3. Bt Crops
 - 4.1.4. Stress Tolerant, Herbicide and Disease Resistant Crop Varieties
 - 4.2. Farming Pharmaceuticals
- 5. Concluding Remarks

Roles of Plant Hormones in Legume Nodulation

P. K. Chan and P.M. Gresshoff, ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, Australia.

337

299

BIOTECHNOLOGY

- 1. Introduction
- 2. Abscisic Acid
- 3. Auxin
- 4. Cytokinin
- 5. Ethylene
 6. Gibberellins
- 7. Conclusion

Index

351

About EOLSS