BIOTECHNOLOGY

CONTENTS

VOLUME IX

Marine Biotechnology 1
Indrani Karunasagar, University of Agricultural Sciences, India

1. Scope of Marine Biotechnology
2. Industries Based on Marine Biotechnology
3. Scientific Studies with a Commercial Potential

Molecular Aspects of Steroid Action in Marine Fishes 14
Brian S. Nunez, The University of Texas at Austin, USA
S.L. Applebaum, The University of Texas at Austin, USA
A.H. Berg, The University of Texas at Austin, USA
G.E. Dressing, The University of Texas at Austin, USA
A.N. Evans, The University of Texas at Austin, USA
C.W. Tubbs, The University of Texas at Austin, USA
T.P. Barry, University of Wisconsin, USA

1. Introduction
2. Steroid Classes
 2.1. Progestins
 2.1.1. Corticosteroids
 2.1.2. Maturation Inducing Steroids
 2.2. Androgens
 2.3. Estrogens
 2.4. Neurosteroids
3. Steroidogenesis
 3.1. Cholesterol Transfer
 3.2. Cytochromes P450
 3.2.1. CYP11A (Cholesterol Side Chain Cleavage)
 3.2.2. CYP17 (17-hydroxylase; 17,20-lyase)
 3.2.3. CYP21 (21-hydroxylase)
 3.2.4. CYP11B (11β-hydroxylase)
 3.2.5. CYP19 (Aromatase)
 3.2.6. CYP1α (1α-hydroxylase)
 3.3. Hydroxysteroid dehydrogenases (HSDs)
 3.3.1. HSD3
 3.3.2. HSD11
 3.3.3. HSD17
 3.3.4. HSD20
4. Steroid Binding Proteins
 4.1. Sex Hormone Binding Globulin
 4.2. Corticosteroid Binding Globulins
 4.3. Albumin
5. Steroid Inactivating Enzymes
 5.1. Cytochromes P450
 5.2. Hydroxysteroid Dehydrogenases
 5.3. Steroid Reductases
 5.4. Sulfotransferase
 5.5. UDP-Glucuronosyltransferases
6. Steroid Hormone Receptors
 6.1. Nuclear Steroid Hormone Receptors
 6.1.1. Progestin receptors
6.1.2. Corticosteroid receptors
6.1.3. Androgen Receptors
6.1.4. Estrogen Receptors
6.1.5. Membrane Localized Nuclear Steroid Receptors

6.2. Novel Membrane Steroid Receptors
 6.2.1. Novel Membrane Progestin Receptor
 6.2.2. Novel membrane Androgen Receptor
 6.2.3. Novel Membrane Estrogen Receptor

7. Examples of Processes Governed by Steroid Hormones
 7.1. Oocyte Growth and Vitellogenesis
 7.2. Regulation of Oocyte Maturation
 7.3. Regulation of Spermatogenesis
 7.4. Hydromineral Balance
 7.5. Development

8. Concluding Remarks

Marine Microbial Enzymes

S. Rajeev Kumar, Cochin University of Science and Technology, India
M. Chandrasekaran, Cochin University of Science and Technology, India

1. Introduction
2. Role of Microbial Enzymes in Marine Environment
3. Enzymes from Marine Microorganisms
 3.1. Polysaccharases
 3.1.1. Starch Hydrolyzing Enzymes
 3.1.1.1. α -Amylase (EC-3.2.1.1)
 3.1.1.2. α -Glucosidase (EC-3.2.1.2)
 3.1.1.3. Pullulanases (EC-3.2.1.41)-Debranching Enzymes
 3.1.1.4. Cyclomaltodextrin-glucanotransferase (CGase EC-2.4.1.19)
 3.1.2. Agarase (EC-3.2.1.81)
 3.1.3. Alginate-lyase (EC-4.2.2.3)
 3.1.4. β -carrageenanase (EC-3.2.1.83)
 3.1.5. α -Galactosidase (EC-3.2.1.22)
 3.1.6. Cellulases and Related Enzymes
 3.1.7. Glucanases
 3.1.8. Chitinases (EC-3.2.1.14)
 3.1.9. Other Polysaccarases
 3.2. Laccase (LC) (EC-1.10.3.2)
 3.3. Proteases
 3.4. Lipase (EC-3.1.1.3)
 3.5. Other Known Enzymes
 3.5.1. Amido Hydrolases
 3.5.1.1. L-asparaginase (EC-3.5.1.1)
 3.5.1.2. L-glutaminase
 3.5.2. Tyrosinase (EC-1.14.18.1)
 3.5.3. Hydrogenase
 3.5.4. Superoxide-dismutase (SOD, EC-1.15.1.1)
 3.5.5. Glucose-dehydrogenase
 3.6. Extremozymes (Enzymes from extremophiles)
 3.6.1. Thermostable Enzymes
 3.6.2. Cold Adapted Enzymes
 3.6.3. Alkalophilic Enzymes
 3.6.4. Halophilic and Halo Tolerant Enzymes
 3.7. Recognition of Valuable Extremozymes
4. Enzymes as Tools in Biotechnology
 4.1. Restriction Enzymes from Marine Bacteria
 4.2. Other Nucleases from Marine Bacteria
4.3. Bacteriolytic Enzyme by Bacteriophage from Seawater

5. Innovations in Enzyme Technology
 5.1. Enzyme Engineering
 5.2. Immobilization Technology
 5.3. Gene Cloning for Marine Enzymes

6. Future Prospects

Biotechnological Tools in fish health Management
Indrani Karunasagar, University of Agricultural Sciences, India

1. Microbial Disease Problems in Aquaculture
2. Strategies for Health Management
3. Biotechnological tools in health management
 3.1. Pathogen detection and disease diagnosis
 3.2. Biocontrol of pathogens through probiotics
 3.3. Protection of hosts through immunoprophylaxis
 3.4. Bioremediation of aquaculture environment

Molecular Tools for Improving Seafood Safety
Idnya Karunasagar, University of Agricultural Sciences, India

1. Introduction
2. Bacterial Pathogens Associated with Seafoods
 2.1. Vibrio spp
 2.2. Salmonella
 2.3. Listeria monocytogenes
3. Viruses
 3.1. Hepatitis A Virus
 3.2. Norwalk and Norwalk-like Viruses
 4.1. Biotechnological Tools for Bacterial Identification and Detection
 4.1.1. Vibrio cholerae
 4.1.2. Salmonella
 4.1.3. Listeria monocytogenes
 4.1.4. Vibrio vulnificus
 4.1.5. Vibrio parahaemolyticus
 4.2. Biotechnological Tools for the Detection of Pathogenic Viruses
5. Antibiotic Resistant Bacteria in Aquatic Systems and Monitoring their Presence by Molecular Methods

Marine Natural Products Biotechnology
Russell T. Hill, University of Maryland, USA

1. Historical Development
2. Present Development
 2.1. Introduction and Scope
 2.2. Pharmaceuticals
 2.3. Microbiological Aspects of Marine Natural Products Discovery
 2.4. Production Issues
 2.5. Enzymes
 2.6. Other Products
 2.7. Environment
 2.8. Social Aspects
3. Future Development
Molecular Tools for the Study of Marine Microbial Diversity

1. The Importance of Biodiversity Research in the Marine Environment
2. What Questions can be Answered Using Molecular Biology Techniques?
3. Evaluating Marine Biodiversity by Sequence Analysis and Fingerprinting Methods
 3.1. Sequence Analysis
 3.1.1. Which Genes to Select?
 3.1.2. How to Generate Sequence Data?
 3.1.3. Determining Biodiversity in an Environmental Sample by Sequence Analysis
 3.1.4. Analysing Sequences for Determining Phylogenies and Biodiversity
 3.1.5. DNA Barcoding
 3.2. Fingerprinting Methods
3. Analysis of Population Structure Using Molecular Markers
4. Molecular Probes for Identification and Characterisation of Marine Phytoplankton
 5.1. Introduction
 5.2. Probe Design
 5.3. Detection Methods
5. Conclusions

Bioremediation in the Marine Environment

1. Introduction
2. Types of Pollutants in the Marine Environment
 2.1. Petroleum Hydrocarbons
 2.2. Xenobiotics
 2.3. Heavy Metals
3. Pathways for Bioremediation
 3.1. Biodegradation of Petroleum Hydrocarbons
 3.2. Biodegradation of Xenobiotics
 3.3. Bioremediation of Heavy Metal Pollutants
4. Genetic Engineering and Bioremediation

Biotechnology of Archaea

1. Introduction
 1.1. Archaea Living at the Boiling Point of Water
 1.2. Archaea Growing at Extremes of pH
 1.3. Halophilic Microorganisms
2. Cultivation of Extremophilic Archaea
3. Molecular Basis of Heat Resistance
4. Screening Strategies for the Detection of Novel Enzymes from Archaea
5. Starch Processing Enzymes
 5.1. Heat Stable Amylases and Glucoamylases
 5.2. α-Glucosidases
 5.3. Thermoactive Pullulanases and CGTases
6. Cellulose and Hemicellulose Hydrolyzing Enzymes
7. Chitin Degradation
8. Proteolytic Enzymes
9. Alcohol Dehydrogenases and Esterases
10. DNA Processing Enzymes
BIOTECHNOLOGY

10.1. Polymerase Chain Reaction (PCR)
10.2. DNA Sequencing
10.3. Ligase Chain Reaction

11. Archael Inteins

Viable But NonCulturable Bacteria in the Marine Environment and the Biotechnological Tools to Detect Them
Rita R. Colwell, University of Maryland, USA

1. Introduction
2. History of the Viable but Nonculturable Phenomenon in Bacteria

Extending Integrated Fish Farming Technologies to Mariculture in China
Li Kangmin, Asia Pacific Regional Research & Training Center for Integrated Fish Farming
No. 9 Shanshui West Road Wuxi 214081 China

1. Introduction
2. Rationale of Integrated Aquaculture and Mariculture
 2.1. Chinese Philosophy and ZERI Concept
 2.2. New Natural Philosophy and the Five Kingdoms
3. Integrated Fish Farming
 3.1. Historical Records of Integrated Fish Farming
 3.1.1. Yu Hu Bing
 3.1.2. The Development of Inland Aquaculture Depended upon Natural Seed Supply in Long Period of Time
 3.1.3. The Third Stage
 3.2. Characteristics of Integrated Fish Farming
 3.2.1. Integrated Fish Farming Models vary from Different Natural Conditions and Diversified Economy
 3.2.2. Recycling Agricultural Wastes into Things of Value
 3.2.3. With Rational Utilization of Natural Resources Integrated Fish Farming is being called as Food-saving, Water-saving, Land-saving and Energy-saving Type of Fish Farming
 3.3. Contents of Integrated Fish Farming Systems
 3.4. Models of integrated fish farming systems
 3.5. Expansion of IFF in Reservoir Fisheries
 3.6. Constraints
4. Successful Models in New Stages
 4.1. A new Integrated Fish Farming Model
 4.1.1. Beneficial Microorganism Remediation
 4.1.2. Aquatic Vascular Plant Remediation
 4.1.3. Aquatic Filter-feeding Animal Remediation
 4.2. New model of Rice Fish: Weeding and Eradicating Harmful Insects in paddies by fry
 4.3. Pearl mussel Hyriopsis cumingii culture and processing industry
 4.4. Crab Island Circular Economy Model
5. Mariculture
 5.1. Oceanic resources in China
 5.2. Status Quo of Mariculture Development in China
 5.3. Extending Integrated Fish Farming Technologies to Mariculture
 5.3.1. Induced Breeding in Mariculture
 5.3.2. Integration of Mollusks and Seaweed
 5.3.3. Di-species Polyculture and Multiple Species Polyculture
 5.3.4. Integrated pest/disease management on the basis of 5 kingdom
6. Eight New Concepts or Trends of Integrated Aquaculture and Mariculture
 6.1. Polyculture practiced from mere Fish Species (4-7 cultivated species) to Fish/Turtle, Fish Mollusks to Multiple Aquatic Species (Fish, Shrimps, Mollusks and Algae); from Compementary to Predator-prey
 6.2. Some Euryhaline Species in Mariculture can be cultured in Brackish Water, even in Freshwater

©Encyclopedia of Life Support Systems (EOLSS)
6.3. Some Eurythermal Organisms in the South can be cultured in the North vice versa
6.4. Integration of Culture Fisheries within Macro Agriculture
6.5. Integration of Culture Fisheries with Industries
6.6. Artificial Breeding is to turn Wild Species into Cultured Species
6.7. Hybridization Utilization
6.8. Circular Aquaculture and Mariculture