CONTENTS

GEOINFORMATICS

Geoinformatics - Volume 1
No. of Pages: 434
ISBN: 978-1-84826-986-6 (Print Volume)

Geoinformatics - Volume 2
No. of Pages: 262
ISBN: 978-1-905839-87-2 (eBook)
ISBN: 978-1-84826-987-3 (Print Volume)

For more information of e-book and Print Volume(s) order, please click here

Or contact: eolssunesco@gmail.com
CONTENTS

VOLUME I

Geoinformatics
Peter M. Atkinson, School of Geography, University of Southampton, UK

1. Introduction
 1.1. Geoinformatics
 1.2. The Changing Earth
 1.3. A Note on Science and Technology
 1.4. Scope of this Theme

2. Fundamentals
 2.1. The Human Environment as a Surface
 2.2. Form and Process
 2.3. Measurement of Earth Surface Properties
 2.3.1. Phenomena, Properties and Variables
 2.3.2. Measurement Error
 2.4. Data v. Model
 2.4.1. Analytical Models
 2.4.2. Statistical Models
 2.4.3. Fitting Models

3. Measurement and Spatial Sampling
 3.1. Environmental Measurement
 3.2. Sampling
 3.2.1. Parameters of the Sampling Framework
 3.2.2. Issues of Resolution and Scale
 3.2.3. Scales of Measurement
 3.2.4. Scales of Spatial Variation
 3.2.5. Changing the Scale of Measurement

4. Remote Sensing
 4.1. The Case for Remote Sensing
 4.2. Principles and Systems
 4.2.1. Basic Principles
 4.2.2. API and Photogrammetry
 4.2.3. Remote Sensing in Optical Wavelengths
 4.2.4. Remote Sensing at Microwave Wavelengths
 4.3. The Remotely Sensed Image
 4.4. Models in Remote Sensing
 4.5. Classification, Prediction and Dynamics
 4.5.1. What is there?
 4.5.2. How much is there?
 4.5.3. What is going on there?
 4.6. Applications of Remote Sensing

5. Geographical Information Systems
 5.1. Historical Perspective
 5.2. Data Models
 5.3. GIS functionality
 5.4. Data Transformation
 5.5. Spatial and Attribute Query
 5.6. Overlay
 5.7. Overlay for Landslide Susceptibility Mapping

6. Spatial Statistics
 6.1. Characterization
 6.2. Prediction
 6.3. Simulation
 6.4. Optimizing Sampling Design
6.5. Dynamics
 6.5.1. Space-time Modelling
 6.5.2. Spatially Distributed Dynamic Modelling
6.6. Accuracy Assessment
7. International Cooperation
 7.1. Global Remote Sensing
 7.2. Global Networks and the World Wide Web
8. Conclusion
 8.1. Recent Developments
 8.2. Summary

Sample Data and Survey
Margaret Ann Oliver, Department of Soil Science, University of Reading, UK

1. Introduction
2. Survey
3. Spatial Sampling
 3.1. Design-based Sampling Schemes and Estimation
 3.1.1. Simple Random Sampling
 3.1.2. Stratified Random Sampling
 3.1.3. Systematic Sampling
 3.1.4. Nested Sampling
 3.2. Model-based Sampling Designs and Prediction
 3.3. Nested Sampling Design and Analysis
4. Geostatistical Theory
 4.1. The Variogram
 4.2. Geostatistical Prediction: Kriging
5. Nested Variation
 5.1. Linear Model of Regionalization
 5.2. Factorial Kriging
6. Optimizing Sampling
7. Case Studies
 7.1. Nested Survey and Analysis: Wyre Forest Soil Survey
 7.2. Regular Sampling in One Dimension: Nottingham Survey of Radon in the Soil Gas
 7.3. Data on a Regular Rectangular Grid: Soil loss on ignition data and information digitized from a photograph, Yattendon Estate, Berkshire
 7.4. Irregular Sampling in Two Dimensions: Survey of Soil Radon in Derbyshire
 7.5. Optimal Sampling: Broom’s Barn Farm

Geographic Information Systems in Biogeography and Landscape Ecology
Dale Anthony Quattrochi, National Aeronautics and Space Administration, George C. Marshall Space Flight Center, USA

1. Introduction
2. Biogeographic and Landscape Ecological Research Themes
 2.1. Ecosystem Structure and Function
 2.2. Human/Biota Interactions
 2.3. Landscape Pattern and Process
 2.4. Zoogeography and Animal Ecology
 2.4.1. Continental Drift and Climate Effects on Animal Distributions
 2.5. Methodological Analysis and Modeling
 3.1. Remote Sensing and GIS for Analyzing and Modeling the Spatiotemporal Landscape
 3.1.1. Questions of Space
 3.1.2. Questions of Time
 3.1.3. Questions of Dynamics

©Encyclopedia of Life Support Systems (EOLSS)
4. Future Trends and Directions for Biogeography and Landscape Ecology

Landform and Earth Surface
Christopher David Lloyd, *School of Geography, Queen’s University, Belfast, UK*

1. Introduction
 1.1. Earth Surface Processes and Landforms
 1.2. Digital Representation of Terrain Form
 1.2.1. The Altitude Matrix
 1.2.2. The Triangulated Irregular Network
2. Sampling Landform
3. Ground-based Survey
 3.1. Traditional Survey Techniques
 3.2. Total Stations
 3.3. Global Positioning Systems
4. Remote Sensing of Landform
 4.1. Photogrammetry
 4.2. Radar-based Systems
 4.2.1. Radargrammetry
 4.2.2. Interferometry
 4.3. Laser-based Systems
5. Existing Sources of DEMs
6. Quality of DEMs
7. Application of DEMs
8. Case Studies
 8.1. Viewshed Analysis for Minimising the Visual Impact of a Major Development
 8.2. Deriving a Drainage Network
10. Future Developments
11. Conclusions

Land Hydrology
Stewart William Franks, *Centre of Environmental Dynamics, University of Newcastle, New South Wales, Australia*

1. Introduction
2. Traditional Hydrologic Field Measurement
 2.1. Discharge
 2.2. Rainfall
 2.3. Evapotranspiration
 2.4. Storage (Sub-surface Flows)
3. Spatial Analyses
 3.1. Digital Terrain Models (DTM)
 3.2. Groundwater Mapping and Management
4. Geoinformatics and Hydrological Modelling
 4.1. Distributed Hydrological Catchment Modelling
 4.2. Distributed Hydrological Measures
 4.2.1. Incorporating Distributed Measures of Water Table Dynamics
 4.2.2. Microwave Remote Sensing of Soil Moisture Fields
 4.2.3. Incorporating Estimates of Saturated Areas
 4.3. Estimation of Evapotranspiration
 4.3.1. Energy Balance Approaches to Estimating Spatially-variable Evapotranspiration
 4.3.2. Modelling Spatial Variability in Evapotranspiration
 4.4. Floodplain Mapping and Inundation Modelling
Field Geology
Paul Francis Carey, Badley Aston & Associates Ltd, Winceby House, Lincolnshire, UK

1. Introduction
2. Geological Surveying
 2.1. What Basic Measurements do Geologists Make in the Field?
 2.1.1. Using the Compass-clinometer
 2.1.2. Improving on the Compass-clinometer
 2.1.3. Elevation in Hydrogeology
 2.1.4. Field GIS Systems
 2.1.5. Geological Logs
 2.2. Modeling Spatial Data: Stereonets and Rose Diagrams
3. Mapping what you Can’t See: Geophysical Surveying
 3.1. Gravity Surveying
 3.2. Electrical Surveying
 3.2.1. Resistivity Surveying
 3.2.2. Induced Polarization Surveying
 3.2.3. Self Potential (SP) Surveying
 3.3. Electromagnetic Surveying
 3.3.1. The VLF Method
 3.3.2. The Telluric Surveying Method
 3.4. Seismic Surveying
 3.4.1. Field-based Reflection Surveying
 3.4.2. Refraction Surveying
4. Mapping Geological Composition: Geochemical and Mineralogical Surveying
 4.1. Mineralogical Variation
 4.2. Field X-Ray Fluorescence Analysis
5. Surveying the Flow Characteristics of Rocks in the Field: Geofluids Surveying
 5.1. Field Porosity and Permeability Analysis
 5.2. Field Probe Permeametry Surveys

Remote Sensing and Environmental Monitoring
Paul Michael Mather, School of Geography, The University of Nottingham, U.K.

1. Introduction
2. Digital Data Processing
 2.1. Image-Enhancement Methods
 2.2. Filters, Noise, and Scale
 2.3. Pattern Recognition
3. Conclusions

Physical Basis of Remote Sensing
Doreen S. Boyd, School of Earth Sciences and Geography, Kingston University, U.K.

1. Overview of Remote Sensing and Common Remote Sensing Systems
2. Electromagnetic Radiation
 2.1. Basic Wave Theory
 2.2. Quantum Theory
3. The Electromagnetic Spectrum
4. Sources of Electromagnetic Radiation
 4.1. Natural Sources of Electromagnetic Radiation
 4.2. Artificial Sources of Electromagnetic Radiation
5. Interaction of Electromagnetic Radiation with the Atmosphere
 5.1. Atmospheric Scattering of Electromagnetic Radiation
 5.2. Atmospheric Absorption of Electromagnetic Radiation
 5.3. Atmospheric Refraction of Electromagnetic Radiation
6. Electromagnetic Radiation from Earth’s Surface
 6.1. Solar Radiation
 6.1.1. Spectral Reflectance from Vegetation
 6.1.2. Spectral Reflectance from Soils
 6.1.3. Spectral Reflectance from Water
 6.2. Emitted Radiation
 6.2.1. Thermal Radiation from Vegetation
 6.2.2. Thermal Radiation from Soils
 6.2.3. Thermal Radiation from Water
 6.3. Backscattered Radiation
 6.3.1. Backscatter from Vegetation
 6.3.2. Backscatter from Soils
 6.3.3. Backscatter from Water

7. Sensors

Field Spectroscopy
Edward J. Milton, Department of Geography, University of Southampton, U.K.

1. Introduction
2. Principles of Spectroscopy
3. The Natural Radiation Environment
4. Visualisation of the Bidirectional Reflectance Distribution Function
 4.1. Polar Plot
 4.2. Solar Principal Plane Plot
 4.3. Anisotropy Plot
 4.4. 3-D Polar Plot
5. Historical Development of Field Spectroscopy
6. Field Measurement of Reflectance Factors
 6.1. Active Field Spectroscopy
 6.2. Passive Field Spectroscopy
 6.2.1. Scenario 1: Point Sample, Fixed View Geometry
 6.2.2. Scenario 2: Areal Average, Fixed View Geometry
 6.2.3. Scenario 3: Point Sample, Variable View Geometry
 6.2.4. Scenario 4: Area Sample, Variable View Geometry
7. Applications of Field Spectroscopy
 7.1. As a Remote Sensing Technique in Its Own Right
 7.2. In Education and Training
 7.3. Calibration of Airborne and Spaceborne Sensors
 7.4. As a Source of Data for Quantitative Models and for Spectral Libraries
8. Emerging Technologies for Field Spectroscopy
 8.1. Ground-Based Imaging Spectrometers
 8.2. Developments in Field Instrumentation
 8.3. Developments in Usability

Satellite Remote Sensing
Arthur P. Cracknell, Department of Electronic Engineering and Physics, University of Dundee, U.K.

1. Introduction
2. The Components of a Satellite Remote Sensing System
 2.1. The Instruments
 2.2. The Orbits
3. Ground Facilities
4. Satellite Programs
 4.1. Meteorological Remote Sensing Satellites
 4.2. Landsat
 4.3. Advanced Very High Resolution Radiometer
4.4. RESURS-F and RESURS-O
4.5. Indian Remote Sensing Satellites
4.6. Système Pour l’Observation de la Terre
4.7. European Remote Sensing Satellite
4.8. TOPEX/Poseidon
4.9. Other Systems
5. Applications of Satellite Remote Sensing
6. Land-Based Applications
 6.1. Topographic Mapping
 6.2. Geological Mapping
 6.3. Urban Land Use
 6.4. Agriculture and Forestry
 6.5. Global Studies
7. Oceanographic Applications
8. Meteorological Applications
9. Atmospheric Sounding
10. Modern and Future Systems
 10.1. Current Satellite Systems
 10.2. New NASA Programs
 10.3. The European Space Agency’s Program
 10.4. Current Trends in Instrumentation
11. Conclusion

Imaging Spectrometry
Freek van der Meer, Department of Applied Earth Sciences, Delft University of Technology, Delft, Netherlands; Geological Survey Division, International Institute for Aerospace Surveys and Earth Sciences ITC, Enschede, The Netherlands

1. Introduction and Historical Perspective
2. Physics of Spectroscopy
3. Airborne Imaging Spectrometer Systems
4. Airborne Simulators
 4.1. NASA’s Airborne Simulators
 4.2. The European Space Agency’s Airborne Simulator Experiments
5. Spaceborne Imaging Spectrometer Systems
 5.1. NASA Activities and Joint Ventures with Industry
 5.2. The European Space Agency’s Activities
 5.3. The German Space Agency Missions
 5.4. Other Hyperspectral Satellite Sensor Systems
6. Data Acquisition and Pre-processing of Imaging Spectrometer Data
 6.1. Laboratory Set-Up of a Calibration Facility
 6.2. The Spectral Pre-processing Chain
 6.3. Spatial Pre-processing
 6.4. Noise Characterization
 6.4.1. The Homogeneous Area Method
 6.4.2. The Local Means and Local Variances Method
 6.4.3. The Geostatistical Method
 6.5. Noise Adjustment
 6.6. Atmospheric Correction
 6.6.1. Relative Reflectance
 6.6.2. Absolute Reflectance
7. Thematic Analysis Techniques for Absorption Feature Extraction
 7.1. Binary Encoding
 7.2. Waveform Characterisation
 7.3. Spectral Feature Fitting
 7.4. Spectral Angle Mapping
 7.5. Spectral Unmixing
Radar Remote Sensing
Shaun Quegan, Sheffield Centre for Earth Observation Science, University of Sheffield, U.K.

1. Introduction
2. Basic Properties of Radar Systems
3. Characteristics of Radar Systems
 3.1. Frequency
 3.2. Polarisation
 3.3. Incidence Angle
4. What a Radar Measures
5. Radar Sensors and Their Applications
 5.1. Microwave Scatterometry
 5.2. Radar Altimetry
 5.3. Synthetic Aperture Radar
6. Synthetic Aperture Radar Applications
 6.1. Topographic Mapping
 6.2. Agriculture
 6.3. Forestry
 6.3.1. Forest Mapping
 6.3.2. Biomass
 6.3.3. Forest Flooding
 6.4. Soil Moisture and Roughness
 6.5. Hydrology
 6.6. Hazards
 6.7. Oceanography
 6.8. Sea Ice
 6.9. Land Ice and Snow
7. Future Prospects

NASA Earth Science Enterprise: A New Window on our World
Ghassem R. Asrar, National Aeronautics & Space Administration (NASA) Headquarters, Code Y, Washington, D.C., USA
Gregory J. Williams, National Aeronautics & Space Administration (NASA) Headquarters, Code Y, Washington, D.C., USA
Pierre Morel, National Aeronautics & Space Administration (NASA) Headquarters, Code Y, Washington, D.C., USA

1. Introduction
2. A Scientific Vision—The Earth as a System
3. A View From Above—Characterizing the Earth System
 3.1. Biosphere–Atmosphere Interactions
 3.2. Ocean–Atmosphere Interactions
 3.3. Climate–Chemistry Interactions
 3.4. Polar Regions–Atmosphere Interactions
4. Taking It All In—Understanding the Earth System
5. Getting There From Here—Predicting Earth System Change
6. Conclusion

Index 369

About EOLSS 375

VOLUME II

Statistical Analysis in the Geosciences 1
Eric Christopher Grunsky, Geological Survey of Canada, Ottawa, Ontario, Canada

1. Introduction
 1.1. Exploratory Data Analysis
 1.2. Target and Background Populations
 1.3. Modeled Data Analysis
 1.4. Special Problems
 1.4.1. Leveling Geochemical Data
 1.4.2. Compositional Data

2. Examining Multivariate Geochemical Data
 2.1. Exploratory Methods
 2.1.1. Histograms
 2.1.2. Box Plots
 2.1.3. Density Plot
 2.1.4. Quantile-quantile (q-q)-plots
 2.1.5. Summary Statistical Tables
 2.1.6. Spatial Presentation
 2.1.7. Scatterplot Matrix
 2.1.8. Multiple Box Plots
 2.2. Defining the Threshold and Pathfinder Elements
 2.3. Censored Data
 2.4. Outliers
 2.5. Robust Estimation
 2.6. Transformation of Data

3. Exploratory Multivariate Techniques
 3.1. Robust Estimation of Mean and Covariance Matrices
 3.2. Principal Components Analysis
 3.3. Cluster Analysis Methods
 3.3.1. K-Means Clustering
 3.4. D² Plots: A multivariate extension of (q-q)-plots
 3.5. The Use of Empirical Indices
 3.5.1. Weighted Sum Index

4. Modeled Approaches for Assessing Multi-element Geochemical Data
 4.1. Multivariate Data Analysis: Grouped Data- Target vs. Background
 4.2. Analysis of Variance
 4.3. Regression Methods
 4.4. Canonical Variate Analysis
 4.4.1. Testing Populations
 4.5. Classifying Unknown Observations
 4.5.1. Posterior Probability
 4.5.2. Index of Typicality

5. Sequence of Data Analysis
 5.1. Preliminary Data Analysis
 5.2. Exploratory Multivariate Data Analysis
5.3. Modelled Multivariate Data Analysis
6. Future Trends

Spatial Data Handling and GIS
Peter M. Atkinson, School of Geography, University of Southampton, UK

1. Background
2. Geographical Data
3. Data Models
4. Measurement and Sampling
 4.1. The Support
 4.2. Measurement Error and Accuracy
 4.3. Sampling
5. Data Entry, Archiving and Retrieval
6. Data Organization
7. Analysis
8. Accuracy assessment
9. Conclusion

Classification and Fuzzy Sets
Giles Martin Foody, Department of Geography, University of Southampton, UK

1. Introduction
2. Major approaches to classification
 2.1. Unsupervised classification
 2.2. Supervised classification
 2.2.1. Commonly used approaches
 2.3. Problems in classification
3. Crisp and fuzzy sets
 3.1. Crisp sets
 3.2. Complexity and uncertainty
 3.3. Fuzzy sets
4. Fuzzy classification
 4.1. Fuzzy classifiers
 4.2. Softened classifications
5. Conclusions

Geostatistical Analysis of Spatial Data
Pierre Goovaerts, Biomedware, Inc. and PGeostat, LLC, Ann Arbor, Michigan, USA

1. Introduction
2. Description of Spatial Patterns
3. Modeling Spatial Variation
4. Spatial Prediction
5. Modeling the Local Uncertainty
6. Stochastic Simulation
7. Accounting for Uncertainty in Decision-making
8. Conclusions

Stochastic Modelling of Spatio-Temporal Phenomena in Earth Sciences
Amilcar Oliveira Soares, CMRP- Instituto Superior Técnico, University of Lisbon, Portugal

1. Introduction
2. Joint Space - Time Models
International Cooperation for Data Acquisition and Use
Michael Jeremy Clark, Department of Geography, University of Southampton, UK

1. A background to data cooperation
 1.1. Data as a scientific asset
 1.2. Data as a commodity
 1.3. Data origination, archiving and rescue
2. Value from data integration: the case for data cooperation
 2.1. Integrated data as the basis for comparison
 2.2. Integrated data as a basis for identifying process drivers
 2.3. Integrated data as a basis for change detection
 2.4. Integrated data as a basis for hypothesis testing
 2.5. Integrated data as a basis for regional or global typology and model
 2.6. Integrated data as a basis for impact evaluation and management response
3. Data cooperation in practice
 3.1. Cooperative origination of data: sampling and data quality
 3.2. Cooperation in practice: archiving and distribution
4. The global data networks: principle into practice
5. An example of data cooperation: cold regions science (geocryology)
6. Data cooperation in perspective
 6.1. The ethics of data cooperation
 6.2. A perspective on international data cooperation

Global Data Networks in the Environmental and Life Sciences
Matthew D. Wilson, School of Geographical Sciences, University of Bristol, Bristol, UK.

1. A background to global data networks
 1.1. A brief history of data cooperation
2. World Data Centres
 2.1. WMO World Data Centres
3. Global Resource Information Database
4. Global Observing Systems Information Centre
 4.1. Global Terrestrial Observing System
 4.2. Global Climate Observing System
 4.3. Global Ocean Observing System
5. Conclusions

Developments in Global Land Cover Mapping
Alan S. Belward, Institute for Environment and Sustainability, EC Joint Research Centre, Italy

1. Growing Demand for Global Land Cover Information
 1.1. Scientific Users and Uses
 1.2. Policy Users and Uses
2. Past Experiences
 2.1. The IGBP Land Cover Project DISCover
 2.2. Lessons from DISCover
3. Present Trends
 3.1. New Products, new Challenges
 3.2. Prerequisites
 3.3. The Global Land Cover 2000 project
4. Conclusions

Index 201

About EOLSS 205