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Summary 
 
This article presents an overview of the geostatistical tools available for processing 
spatial data and illustrates the different steps of a typical geostatistical analysis using an 
environmental data set. 
 
First, geostatistics provides descriptive tools such as semivariograms to characterize the 
spatial pattern of continuous and categorical soil attributes. Various interpolation 
(kriging) techniques capitalize on the spatial correlation between observations to predict 
attribute values at unsampled locations using information related to one or several 
attributes. An important contribution of geostatistics is the assessment of the uncertainty 
about unsampled values, which usually takes the form of a map of the probability of 
exceeding critical values, such as regulatory thresholds in pollution or criteria for soil 
quality. This uncertainty assessment can be combined with expert knowledge for 
decision making such as delineation of contaminated areas where remedial measures 
should be taken or fertile areas where specific management plans can be developed. 
Last, stochastic simulation allows one to generate several models (images) of the spatial 
distribution of attribute values, all of which are consistent with the information 
available. A given scenario (remediation process, land use policy) can be applied to the 
set of realizations, allowing the uncertainty of the response (remediation efficiency, soil 
productivity) to be assessed. 
 
1. Introduction 
 
During the last decade, the development of computational resources and geoinformatics 
has fostered the use of numerical methods to process the large bodies of data that are 
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measured in the geosciences. A key feature of geoscience information is that each 
observation relates to a particular location in space. For example, Figure 1 shows the 
spatial distribution of five stratigraphic classes and of concentrations of two heavy 
metals recorded, respectively, at 359 and 259 locations in a 14.5km area in the Swiss 
Jura. Knowledge of an attribute value, say a pollutant concentration, is of little interest 
unless the location of the measurement is known and accounted for in the analysis. 
Another feature is that the information available is usually sparse which, in combination 
with the imperfect knowledge of underlying processes, leads to a large uncertainty 
about the actual spatial distribution of values. Such an uncertainty needs to be quantified 
and accounted for in decision-making, hence probabilistic (statistical) tools are 
increasingly preferred to a deterministic approach where a single (error-free) 
representation is sought. 
 

 
 

Figure 1. Locations of sampling sites superimposed on the geologic map, and 
concentrations in cadmium (Cd) and nickel (Ni) at 259 of these sites (units = mg kg-1). 

 
Different types of spatial data can be distinguished: lattice observations whose spatial 
locations are regularly spaced (e.g.,  gridded data, such as satellite sensor imagery or 
systematic soil survey), point patterns where the important variable to be analyzed is the 
location of “events”, and geostatistical data which can be measured continuously in 
space (e.g.,  soil properties).  This article deals with the latter type of data, which are the 
most common in the geosciences. It is noteworthy that geostatistics is also widely used 
for the analysis of remotely sensed data. 
  
Geostatistics provides a set of statistical tools for incorporating the spatial and temporal 
coordinates of observations in data processing (see Stochastic Modeling of Spatio-
temporal Phenomena in Earth Sciences). It is a relatively new discipline, which was 
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developed in the 1960s, primarily by mining engineers who were facing the problem of 
evaluating recoverable reserves in mining deposits.  
 
Priority was given to practicality, a current trademark of geostatistics that explains its 
success and application in such diverse fields as mining, petroleum, soil science, 
oceanography, hydrogeology, remote sensing, agriculture, and environmental sciences. 
Geostatistics can be used for three main purposes: 1) description of spatial patterns, 2) 
spatial interpolation, and 3) modeling of local and spatial uncertainty. In other words, 
looking at the example of Figure 1, here are some of the key issues that geostatistics 
allows one to address. What are the main features of the spatial patterns of heavy metals 
and how do they relate to the distribution of potential sources, such as rock types and 
human activities? What is the metal concentration that could be expected at an 
unsampled location? What is the probability that the regulatory threshold is exceeded at 
an unsampled location? Which areas should be remediated and what is the risk of 
making a wrong decision that is classifying as safe contaminated locations or classifying 
as contaminated safe locations? Where should additional observations be measured to 
increase the accuracy of the predictions and reduce the risk of misclassification? These 
few examples illustrate the potential of geostatistics for improving the understanding 
and characterization of the environment, leading to more accurate models of the spatial 
distribution of attribute values, and subsequently more informed decision-making. 
 
2. Description of Spatial Patterns 
 
Analysis of spatial data typically starts with a spatial “posting” of data values such as in 
Figure 1. For both continuous (metal concentrations) and categorical (rock type) 
attributes, the spatial distribution of values is not random, in that observations close to 
each other on the ground tend to be more alike than those further apart. The presence of 
such a spatial structure is a prerequisite to the application of geostatistics, and its 
description is a preliminary step towards spatial prediction or modeling of uncertainty. 
 
Consider the problem of describing the spatial pattern of a continuous attribute z, say a 
pollutant concentration such as cadmium or nickel. The information available consists 
of values of the variable z at n locations: 
 

, { ( ), 1, 2, , },z nα α α =u u …  
 
where αu  is a vector of spatial coordinates in up to three dimensions.  
 
Spatial patterns are usually described using the experimental semivariogram ˆ( )γ h , 
which measures the average dissimilarity between data separated by a vector h . 
 
It is computed as half the average squared difference between the components of data 
pairs: 
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where ( )N h  is the number of data pairs within a given class of distance and direction.  
 
Figure 2 (the top graphs) shows the semivariograms computed from the data of Figure 1 
using distance classes of 100~m. Data pairs in all directions were pooled, and such 
semivariograms are called omnidirectional. For both metals, semivariogram values 
increase with the separation distance, reflecting the intuitive feeling that two 
concentrations close to each other on the ground are more alike and, thus, their squared 
difference is smaller than those further apart. The two semivariograms stop increasing at 
a given distance, called the range, which can be interpreted as the distance of 
dependence, or zone of influence, of metal concentrations. The discontinuity at the 
origin of the semivariogram (i.e., at very small separation distances) is called the nugget 
effect and arises from measurement errors or sources of spatial variation at distances 
smaller than the shortest sampling interval or both. These graphs point out distinct 
spatial behaviors of the two metals:  Ni concentrations appear to vary more 
continuously than Cd concentrations, as illustrated by the smaller nugget effect and 
larger range of its semivariogram. In combination with knowledge about the 
phenomenon and the study area, such a spatial description can enhance our 
understanding of the physical underlying mechanisms controlling spatial patterns. In the 
present example, the long-range structure of the semivariogram of Ni concentrations is 
probably related to the control asserted by rock type, while the short-range structure for 
cadmium suggests the impact of local human-induced contamination. 
    

 
 

Figure 2. Experimental omnidirectional semivariograms for Cd and Ni: original 
concentrations and indicator transforms using thresholds corresponding to the second- (-

--), fifth- (--~--) and eighth-decile (-~-~-) of the sample histogram. 
 

Spatial patterns may differ depending on whether the attribute value is small, medium, 
or large. For example, in many environmental applications, a few random “hot spots” of 
large concentrations coexist with a background of small values that vary more 
continuously in space.  Depending on whether large concentrations are clustered or 
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scattered in space, the interpretation of the physical processes controlling contamination 
and the decision for remediation may change. 
 
The characterization of the spatial distribution of z -values above or below a given 
threshold value kz  requires a prior coding of each observation ( )z αu  as an indicator 
datum ( ; )ki zαu , defined as: 
 

1 if ( )
( ; )

0 otherwise
k

k
z z

i z α
α
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⎩

u
u  (2) 

 
Indicator semivariograms can then be computed by substituting indicator data ( ; )ki zαu  
for z -data ( )z αu  in the equation (1): 
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The indicator variogram value ˆ2 ( ; )kzγ Ι h  measures how often two z -values separated 
by a vector h  are on opposite sides of the threshold value kz . In other words, 

ˆ2 ( ; )kzγ Ι h  measures the transition frequency between two classes of z -values as a 
function of h . The greater is ˆ ( ; )kzγ Ι h , the less connected in space are the small or large 
values. 
 
Figure 2 (the bottom graphs) shows the omnidirectional indicator semivariograms 
computed for the second-, fifth- and eighth-decile of the distributions of cadmium and 
nickel concentrations. For both metals, indicator semivariograms for small 
concentrations have smaller nugget effect than those for larger concentrations, which 
suggests that homogeneous areas of small concentrations coexist within larger zones 
where large and medium concentrations are intermingled. Two clusters of small 
concentrations are indeed apparent on the location maps of Figure 1 and correspond to 
the Argovian rocks. 
 
Many variables in geosciences, such as texture or land use classes, take only a limited 
number of states, which might be ordered or not. The spatial patterns of such categorical 
variables can also be described using geostatistics. Let S  be a categorical attribute with 
K  possible states , 1, 2, ,ks k K= … . The K  states are exhaustive and mutually 
exclusive in the sense that one and only one state ks  occurs at each location αu . The 
pattern of spatial variation of a category ks  can be characterized by semivariograms of 
type (3) defined on an indicator coding of the presence or absence of that category: 
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The indicator variogram value ˆ2 ( ; )ksγ Ι h  measures how often two locations a vector h  
apart belong to different categories k ks s′ ≠ . The smaller is ˆ2 ( ; )ksγ Ι h , the more 
connected is category ks . The ranges and shapes of the directional indicator 
semivariograms reflect the geometric patterns of ks . 
 
Figure 3 shows the indicator semivariograms of two stratigraphic classes of Figure 1 
computed in four directions with an angular tolerance of 22.5°. For both classes the 
indicator semivariogram value equals zero at the first lag, which means that any two 
data locations less than 100~m apart belong to the same formation.  The longer SW-NE 
range (larger dashed line) reflects the corresponding preferential orientation of these 
two lithologic formations. 
 

 
 

Figure 3. Experimental indicator semivariograms of Argovian and Sequanian rocks 
computed in four directions measured in degrees clockwise from North (---: 22.5, --~--: 

67.5, -~-~- : 112.5, ~~: 157.5; angular tolerance = 22.5). 
 
Information in the geosciences is often multivariate, and the semivariogram can be 
generalized to the bivariate case, allowing one to investigate how the correlation 
between two attributes (e.g.,  Ni and Cd concentrations) varies in space. Three-
dimensional data can be analyzed using the same tools although the description and 
visualization of variability along the different dimensions becomes more complicated. 
 
- 
- 
- 
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