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Summary 
 
This article contains a comprehensive discussion of descriptive spatio-temporal 
statistical methods that have been applied extensively in the climatological sciences. 
The climate system is composed of many processes that exhibit complicated variability 
over a vast range of spatial and temporal scales.  Data sets of measurements collected on 
this system are typically very large by statistical standards, and their analysis typically 
requires dimension reduction in space and / or time.  Scientists have developed or 
borrowed and refined many descriptive statistical techniques that aid in the summary 
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and interpretation of these data.  The focus here is on a subset of some the most useful 
methodologies: empirical orthogonal function (EOF) analysis, principal oscillation 
pattern (POP) analysis, spatio-temporal canonical correlation analysis (CCA), and space 
time spectral analysis.  These methods are described in detail along with physical 
motivation, discussion of estimation issues, and practical considerations. 

 
1. Introduction  
 
The climate system can be described as the superposition of a set of deterministic, 
multivariate, and nonlinear interactions over an enormous range of spatial and temporal 
scales.  In order to understand this system, scientists must observe, summarize, make 
inference, and ultimately predict its behavior at each scale of variability, as well as the 
interaction between these scales. Unfortunately, although the system is deterministic in 
principle, the collective knowledge is incomplete at each of the observation, 
summarization, and inference stages, and thus ultimate understanding is clouded by 
uncertainty.  Consequently, by the time one considers the prediction phase, this lack of 
certainty, combined with the nonlinear dynamics of the system, contributes to what is 
now known as dynamical chaos. Although one is always faced with the inherent chaotic 
nature of the climate system, many of the relevant scientific questions can be 
approached from a probabilistic viewpoint, which allows useful inference to be made in 
the presence of uncertainty, at least for relatively large spatial scales and relatively short 
temporal scales.  Furthermore, one is then able to look for possible associations within 
and between variables in the system, which may ultimately extend the still incomplete 
physical theory. 

 
Central to the observation, summarization, inference, and prediction of the 
atmosphere/ocean system is data. Unfortunately, all data come bundled with error.  This 
is an inescapable fact of scientific life.  In particular, along with the obvious errors 
associated with the measuring, manipulating, and archiving of data, there are errors due 
to the discrete spatial and temporal sampling of an inherently continuous system.  
Consequently, there are always scales of variability that are unresolvable, and which 
will surely contaminate the observations. In atmospheric science, this is considered a 
form of “turbulence”, and corresponds to the well known aliasing problem in time–
series analysis and the “nugget effect” in geostatistics.  Furthermore, atmospheric and 
oceanic data are rarely sampled at spatial or temporal locations that are optimal for the 
solution of a specific scientific problem.  For instance, there is an obvious bias in data 
coverage towards areas where population density is large and, due to the cost of 
obtaining observations, towards a country whose Gross Domestic Product is relatively 
large.  Thus, the location of measuring site and its temporal sampling frequency may 
have very little to do with science.  To gain scientific insight, these uncertainties must 
be considered when framing scientific questions, choosing analysis techniques, and 
interpreting results.  This task is complicated further since atmospheric and oceanic data 
are nearly always correlated in space and time.  In this case most of the traditional 
statistical methods taught in introductory statistics courses (which assume independent 
and identically distributed errors) do not apply.  
 
Because the physically–based deterministic models used for weather and climate 
prediction require “gridded” initial conditions, scientists have long been interested in 
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methods to estimate atmospheric variables on regular grids.  This problem is exactly the 
spatial prediction problem addressed by “kriging”. In fact, L.S. Gandin developed a 
complete theory of spatial best linear unbiased prediction in the context of the spatial 
prediction (gridding) problem in meteorology, which he called optimum interpolation 
(at the same time that Matheron was developing the foundations of kriging.)  The 
meteorological spatial prediction problem has some unique features that make its 
application different from those in traditional geostatistics. First, the data come in space 
and time, effectively providing replications (although correlated in time) from which to 
deduce potentially nonstationary covariance structures.  Furthermore, given that the 
physical phenomena governing the climate processes are relatively well-known (at some 
scales); spatial prediction must adhere to certain dynamical constraints.  Thus, a 
substantial component of the spatial prediction problem in this discipline is devoted to 
including appropriate dynamic constraints.  The procedure for generating dynamically 
consistent initial conditions for deterministic geophysical models is known as data 
assimilation.  Current work in the area focuses on performing the spatio-temporal 
prediction in three spatial dimensions and time, so–called four-dimensional data 
assimilation. The most promising methods use variational approaches or Kalman filters.  
Although these efforts have traditionally been tied to operational numerical weather 
prediction, they are also used to develop large dynamically consistent “data” sets for 
climate analysis and prediction. 
 
A key challenge in climate research is the extraction of information from the huge 
spatio–temporal datasets generated by the data assimilation process, deterministic model 
output, and raw observation networks. These data sets comprise observations of 
extremely complicated multivariate processes.  Thus, methods of analysis must be able 
to account for multiscale dynamical variability across different dynamical variables in 
space and time, account for various sources of error, and provide efficient dimension 
reduction.  There are several key methodologies that have proven to be essential to this 
task,namely, empirical orthogonal function (EOF) analysis, principal oscillation pattern 
(POP) analysis, spatio-temporal canonical correlation analysis (CCA), and space–time 
spectral analysis. In the remainder of this article, these methods are described in detail. 
The interested reader should note that there are several excellent reference books that 
have been written on statistics in the climatological sciences.  A partial list is included 
in the Bibliography. 
 
2. Descriptive Statistical Methods 
 
2.1. Empirical Orthogonal Function (EOF) Analysis 
 
EOF analysis is the geophysicist’s manifestation of the classic eigenvalue / eigenvector 
decomposition of a correlation (or covariance) matrix.  In its discrete formulation, EOF 
analysis is simply Principal Component Analysis (PCA), while in the continuous frame 
work, it is simply a Karhunen–Loeve(K-L) expansion.  Depending on the application, 
EOFs are usually used(1) in a diagnostic mode to find principal (in terms of explanation 
of variance) spatial structures, along with the corresponding time variation of these 
structures, and (2) to reduce the dimension (spatially ) in large geophysical data sets 
while simultaneously reducing noise. 
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One finds in the meteorological literature, extensive use of EOFs since their 
introduction by Lorenz in the mid 1950s. For example, they have been used for 
describing climate, comparing simulations of general circulation models, developing 
regression forecast techniques, weather classification, map typing, the interpretation of 
geophysical fields, and the simulation of random fields, particularly non-homogenous 
processes. In addition, as in the psychometric literature for PCAs, orthogonal and 
oblique rotation of EOFs often aids in the interpretation of meteorological data.  
Furthermore, because EOFs have difficulty resolving traveling wave disturbances, 
complex EOF analysis was introduced in the early 1970s and has proven to be very 
useful in applications to climatological analysis. 
 
2.1.1. Continuous K-L Formulation  
 
Consider a continuous spatial process measured at discrete time intervals. The goal is to 
find an optimal and separable orthogonal decomposition of a spatio-temporal 
process ( ; )Z ts , where s denotes a spatial location in some spatial domain in Euclidean 
space, and  {1,2,..., }t T∈  denotes some time. That is, consider     
                              

( ) ( ) ( )
1

; k
k

Z t a t
∞

=
= ∑s sφ  

such that 1 2var[ ( )] var[ ( )]a t a t> > ...,  and cov[ ( ), ( )] 0i ka t a t =  for all .i k≠  A 
well known solution to this problem is obtained through a Karhunen-Loève (K-L) 
expansion. Suppose E[ ( ; )] 0,Z t =s  and define the covariance function 

as 0E[ ( ; ) ( ; )] ( , ),Z t Z t c≡s r s rZ  which need not be stationary in space, but is assumed 
to be invariant in time. The K-L expansion then allows the covariance function to be 
decomposed as follows: 
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k
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∞
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where { ( ) : 1,..., }k k⋅ = ∞φ are the eigenfunctions and { : 1,...., }k k = ∞λ are the 
associated eigenvalues of the Fredholm integral equation. 
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Assuming completeness of the eigenfunctions, one can expand ( ; )Z ts  according to  
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( ) ( ) ( )
1

; ,k k
k

Z t a t
∞

=
= ∑s sφ   (2) 

 
where { ( ) : }k D∈s sφ is known as the k-th EOF and the associated time series ( )ka t is 
the k-th principal component time series, or “amplitude” time series. This time series is 
derived from the projection of the Z process onto the EOF basis, 
 

( ) ( ) ( ); .k kD
a t Z t d= ∫ s s sφ                                     

 
It is easy to verify that these time series are uncorrelated, with variance equal to the 
corresponding eigenvalues; that is, E[ ( ) ( )]i k ik ka t a t = δ λ where ikδ  equals one when 
i = k and zero otherwise. 
 
If the expansion (2) is truncated at K, yielding 
 

( ) ( ) ( )
1

; ,
K

K k k
k

Z t a t
=

≡ ∑s sφ
 

 
then it can be shown that the finite EOF decomposition minimizes the variance of the 
truncation error, 2E{[ ( ; ) ( ; )] },KZ t Z t−s s  and is thus optimal in this regard when 
compared to all other basis sets. 
 
Since data are always discrete, in practice one must solve numerically the Fredholm 
integral equation (1) to obtain the EOF basis functions. For example, numerical 
quadrature approaches for discretizing the integral equation succeed in that they give 
estimates for the eigenfunctions and eigenvalues that are weighted according to the 
spatial distribution of the data locations, but only for the eigenfunctions at 
locations 1{ ...., }ns s for which there are data. Alternatively, one can discretize the K-L 
integral equation and interpolate the eigenfunctions to locations where data are not 
available. 
 
2.1.2. Discrete EOF Analysis 
 
Although the continuous K-L representation of EOFs is the most realistic from a 
physical point-of–view, it is only rarely considered in applications. This is due simply to 
the discrete nature of data observations and the added difficulty of solving the K-L 
integral equation. Consider a discrete EOF analysis by using the PCA formulation as 
given in standard multivariate statistics textbooks, but according to the spatio-temporal 
notation introduced here. In that case, let 1( ) ( ( ; ),..., ( ; ))nt t Z t≡Z s sZ ′ and define the 

k-th EOF( 1,..., )k n=  to be 1( ( ),..., ( )) ,k k n≡ s sψ ψk
′ψ where kψ  is the vector in the 

linear combination: ( )ka t t= '
k ( )Zψ . Furthermore, 1ψ is the vector that allows 

1var[ ( )]a t  to be maximized subject to the constraint 1 1.='1ψ ψ  Then 2ψ is the 
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vector that maximizes 2var[ ( )]a t subject to the constraint 2 1='ψ ψ2 and 

1 2cov[ ( ), ( )] 0a t a t = . Thus, kψ is the vector that maximizes var[ ( )]ka t subject to the 

orthogonality constraint 1k k =
'ψ ψ  and cov[ ( ), ( )] 0ka t a t =j  for all k ≠ j . This is 

equivalent to solving the eigensystem 0
Z =C Ψ ΨΛ , where 

0 1 1diag( ),], ( ,..., ),Z
nt t≡ = =Ψ λ λnψ ψ( )C E[Z Z( )′ Λ and 

,var[ ( )] 1,...,i ia t i n= =λ .  The solution is obtained by a symmetric decomposition 

of 0
ZC , given by 0

ZC = 'ΨΛΨ . 
 
It is straightforward to show that if a discretization of the K-L integral equation assumes 
equal areas of influence for each observation location, then such a discretization is 
equivalent to the PCA formulation of EOFs. Conversely, an EOF decomposition of 
irregularly spaced data without consideration of the relative area associated with each 
observation location leads to improper weighting of the significance of each element of 
the covariance matrix 0

ZC . This can give erroneous results in the EOF analysis. The 
distinction between EOFs on a regular grid and on an irregular gird is the source of 
many incorrect applications of the technique in the literature. 
 
2.1.3. Estimation of EOFs 
 
Since the EOF analysis depends on the decomposition of a covariance matrix, we must 
estimate this matrix in practice.  The traditional approach is based on the method of 
moments (MOM) estimation procedure.  For example, in the discrete case with equally 
spaced observations, one needs an estimate of 0

ZC . The MOM estimator for an element 

of 0
ZC , is given by  

 

 ( ) ( ) ( ) ( ) ( ) ( )0
1

ˆ ˆ ˆ; 1/ ; ; ; ; ,
T

Z
i i Z i Z

t
c T Z t t Z t tμ μ

=

⎡ ⎤⎡ ⎤≡ −⎣ ⎦ ⎣ ⎦∑s s s s s sj j j–        

                         
where ˆ ( ; )Z i tμ s  is an estimate of the mean of ( ; ),iZ ts  for i=1,…n.  This mean 
correction must be included since data usually show a nonzero mean.  Typically, 
investigators use the estimated “time mean”, 
 

( ) ( ) ( )
1

ˆ 1/ ; ,
T

Z i i
t

T Z tμ
=

≡ ∑s s  

                                                      
although other estimators can be used, depending on the application. 
 
Given an estimate 0

ˆ ZC of 0
ZC that is symmetric and non-negative definite (so that all 

eigenvalues are greater than or equal to zero), an estimate of its eigenvectors and 
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eigenvalues can be obtained through the diagonalization 0
ˆ ZC = ˆ ˆ ˆ ′ΨΛΨ . Approximate 

formulas for the bias and variance of the standard eigenvalue estimator can be obtained. 
In general, the sample eigenvalue ˆ

kλ is a biased estimator of kλ and the bias is positive 
for the larger 'skλ  and negative for the smaller 'skλ . Unbiased estimators can be 
constructed, but the decrease in bias is accompanied by an increase in the variance of 
the estimator. Furthermore, the sampling error associated with the estimated EOFs leads 
to numerical instability in the eigenvectors. This has led to sampling–based selection 
strategies for the truncation level, K. 

 
2.1.4. Complex EOF Analysis 
 
Consider a spatio-temporal process consisting of a sinusoid in one spatial dimension 
that is invariant in time, ( )( ; )= sin ,Z s t B sl where s  is some location in one-
dimensional space,t  is a time index, B  is an amplitude coefficient, and l is the spatial 
wave number, which is related to the wavelength L such that 2 /l L= π .  Now, 
consider the same sinusoid but allow it to have a temporal phase component (i.e., it can 
be considered as a wave in space which propagates in time): 
                                
( ) ( ) ( ) ( ) ( ) ( ); sin cos sin sin cos ,Z s t B ls t B t ls B t ls= + = −ω ω ω   (3) 

where ω  is the temporal frequency. In order to characterize the phase propagation of 
such a sinusoid, information is needed regarding the coefficients of the two components, 
sin (ls) and cos (ls), which are a quarter of a cycle out of phase. In time series analysis, 
this is analogous to the need for both the quadrature and co-spectrum between two time 
series in order to determine their spectral coherence and phase relationships. 
 
One advantage of the EOF approach described previously is its ability to compress the 
complicated variability of the original data set onto a relatively small set of eigenvectors. 
Unfortunately, such an EOF analysis only detects spatial structures that do not change 
position in time.  To extend the EOF analysis to the study of spatial structures that can 
propagate in time, one can perform a complex principal component analysis in the 
frequency domain.  The technique involves the computation of complex eigenvectors 
from cross-spectral matrices.  The limitation of this technique is that it only gives the 
decomposition for individual (i.e., very narrow) frequency bands.  Consequently, If the 
power of a phenomenon is spread over a wide frequency band (as is generally the case 
with physical phenomena) , then several EOF spatial maps (one for each spectral 
estimate) are needed to evaluate the phenomenon.  This complicates the physical 
interpretation. 
 
Complex empirical orthogonal function (CEOF) analysis in the time domain was 
developed as an alternative to the frequency–domain approach described above. This 
method differs from the frequency–domain approach in that Hilbert transforms (see 
below) are used to shift the time series of the data at each location by a quarter cycle. 
Analogous to (3), the original data and its Hilbert transform allow the examination of 
propagating disturbances. 
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Consider { ( ; ); 1,..., }jZ t j n=s as described previously. Under certain regularity 

conditions, ( ; )jZ ts  has a Fourier representation of the form 
 

( ) ( ) ( ) ( ) ( ); cos sinj j jZ t t tα β= +∑s
ω

ω ω ω ω                                    

 
where ( )jα ω and ( )jβ ω  are the Fourier coefficients, and ω is the 

frequency( )− ≤ ≤π ω π . Since the description of propagating features requires phase 
information, it is convenient to use the complex representation: 
   

( ) ( ); ,f i t
j jZ t g e−= ∑s ω

ω
ω   (4)          

                                                               
where ( ) ( ) ( )j j jg i= +ω α ω β ω . Expanding (4) gives  
 

( ; ) ( ; ) ( ; ),f
j j jZ t Z t iZ t= +s s s  

 
where   

( ) ( ) ( ) ( ) ( ); cos sin ,j j jZ t t t= +s α ω ω β ω ω     

                                                              
and, 
 

( ) ( ) ( ) ( ) ( ); cos sin .j j jZ t t t= −s β ω ω α ω ω                                   

 
The real part ( ; )jZ ts  is the original process and the imaginary part ( ; )jZ ts  is the 
Hilbert transform of the original process, which is just the original process with its 
phase shifted in time by / 2π . 
 

Now, the covariance matrix of ( );f
jZ ts can be written as:   

 

( )0 0 , 1,...,
;Z f Z f

j k j k n
c

=
⎡ ⎤= ⎣ ⎦s sC                                                           

 

where *
0

( , ) ( ; ) ( ; )]Z f f f
j k j kc Z t Z t≡s s s sE[ (assuming zero mean),and where* 

denotes the complex conjugate. Note that 
0
Z fC is essentially the cross–spectral matrix 

averaged over all frequencies ( )− ≤ ≤ω ππ , and thus leads to an average depiction of 
the propagating disturbances present in the data.  If interest concerns phenomena 
occurring over a certain spectral frequency range of ω , then the original 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ENVIRONMETRICS - Spatio-temporal Methods in Climatology - Christopher K. Wikle 
 

©Encyclopedia of Life Support Systems (EOLSS) 

process ( ; )Z t⋅  and its Hilbert transform ( ; )Z t⋅  can be filtered accordingly before the 
CEOF analysis. 
 

Since 0
Z fC is Hermitian, it possesses real eigenvalues{ }kλ and complex eigenvectors, 

1( ( ),..., ( ))k k k n ′≡ s sγ γγ   where =1,..., .  k n The EOF representation of ( ; )fZ t⋅ , 
which optimally account for the variance of ( ; )Z t⋅  in the frequency band of interest, 
is: 
 

 ( ) ( ) ( )*

1
; ,

n
f

i k k i
k

Z t a t
=

= ∑s sγ        

                                    
where the complex time-dependent principal components are given by: 
 

( ) ( ) ( )
1

; .
n

f
k i k i

i
a t Z t

=
= ∑ s sγ              

                                  
Four measures are generally used to examine the structure of the CEOFs. 
 

• Spatial Phase Function.  The spatial phase function is given by : 
 

( )
( )( )
( )( )

arctan
Im

.
Re

k i
k i

k i
θ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

s
s

s
γ

γ
 

                               
This function can take any value between −π andπ . In the case of the simple sinusoid 
with temporal phase(3), this corresponds to ls. In that case the spatial phase will go 
through one complete cycle ( )2π over the distance(2 ) / lπ . Note that for data fields 
that include many different scales of variability, the spatial phase plot can be very 
difficult to interpret.  Prefiltering generally improves interpretability. 
 
• Spatial Amplitude Function  The spatial amplitude function is given by: 

 

 ( ) ( ) ( )
1

* 2 .k i k i k iS ⎡ ⎤= ⎣ ⎦s s sγ γ   

                           
This function is interpreted in the same way as the eigenfunctions in traditional EOF 
analysis. 
 
• Temporal Phase Function. The temporal phase function is given by: 
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 ( ) ( )( )
( )( )arctan

Im
.

Re
k

k
k

a t
t

a t
ξ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                                      

 
Consider the simplest sinusoid example in (3). For a fixed frequency 0ω , this temporal 
phase function would give 0tω  (i.e. a linear relationship in time).  In practice, this 
provides information as to the frequency of the dominant component of a particular 
eigenvector at a given time. 
 
• Temporal Amplitude Function. The temporal amplitude function is given by: 
 

( ) ( ) ( )
1

* 2 .k k kR t a t a t⎡ ⎤= ⎣ ⎦                                     

 
This function corresponds to the amplitude time series as given in traditional EOF 
analysis. 
 
2.1.5. Multivariate EOF Analysis 
 
Often, one may be interested in the simultaneous analysis of two or more processes. 
Consider two fields observed over time at the same spatial locations; that is, 
consider ( ; )iZ ts  and ( ; )iX ts ,where 1,..., ; 1,..., .i n t T= = Then, 
write [ ( ) ( ) ]t t t≡ Z( )W X′ ′ ′ where tX( ) 1( ( ; ),..., ( ; )) ,nX t X t ′≡ s s t( )Z is defined as 

before, and the covariance matrix of tW( ) is given by 0
WC . This matrix includes off-

diagonal submatrices that represent the covariance between ( )tZ  and ( )tX . One can 
then obtain the EOF solution in the conventional manner by diagonalizing the 

0
WC matrix; that is 0 ,W = '

W W WC Ψ Λ Ψ  where the columns of WΨ are the eigenvectors 

(i.,e ., EOF s ) and WΛ  is a diagonal matrix containing the eigenvalues of 0
WC . Then, 

the first n elements of the k-th eigenvector correspond to the portion of the k-th EOF for 
the Z process, and the last n elements correspond to the portion representative of the k-th 
EOF of the X process. Theoretically, there is no limit to the number of processes that 
can be considered simultaneously. However, there is a practical limitation to this 
procedure since the covariance matrix can easily become very large if the number of 
observation locations or variables increases. Comparisons of this approach to other 
multivariate methods such as CCA suggests that in some cases the multivariate EOF 
approach has large biases and does not perform well in small signal-to-noise ratio 
situations. 
 
2.1.6. Extended EOF Analysis 
 
Extended EOFs are simply multivariate EOFs in which the additional variables are 
lagged versions of the same process. For example, we could 
let [ 1t t t ′= −W( ) Z( ) Z( ) ]′ ′ . In this case, if temporal invariance is assumed, then the 
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diagonal sub-matrices of 0
WC are equivalent, and the off-diagonal submatrices are just 

the lag-one correlation matrices cov[ 1t t≡ −Z
1C Z( ),Z( )] . In this way, one can 

examine the propagation of EOF spatial patterns in time by noting that the first n 
eigenvalues of a particular eigenvector correspond to the time zero representation of that 
EOF, and the second n eigenvalues correspond to the lag one representation of the same 
EOF. This approach is closely linked with time-lagged CCA and the minimum 
/maximum autocorrelation factor (MAF) method in statistics. 
 
- 
- 
- 
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