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Summary  
 
This article gives a brief overview of classical spatial statistics. Three main types of 
spatial data are considered: geostatistical data, lattice data, and spatial point patterns. 
Modeling themes common to all three data types are emphasized. In addition, some 
basic structural identification procedures for each data type are described. Finally, 
maximum likelihood estimation and spatial prediction (kriging) are briefly reviewed. 
 
1. Introduction 
 
Many observational studies and scientific investigations involve making observations of 
one or more variables at multiple, identifiable sites within some region in two-
dimensional or three-dimensional space. If the locations of these sites (in some 
coordinate system) are observed and attached, as labels, to the observations, the 
resulting data are called spatial data. A spatial data analysis is an analysis of spatial 
data in which the set of spatial locations are taken into account. Spatial statistics is a 
particular kind of spatial data analysis in which the observations or locations (or both) 
are modeled as random variables, and inferences are made about these models and/or 
about additional unobserved quantities. Spatial statistics also includes methods, based 
on the same stochastic models, for determining where and how the observations are to 
be taken (spatial design). 
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Spatial statistics is a vast subject, in large part because the observations, the data 
locations, and the mechanisms that tie the two together can be of so many different 
types. The observations, for example, may be univariate or multivariate, categorical or 
continuous, real-valued or not real-valued (e.g. set-valued); and they may arise from 
either an observational study or a well-designed experiment or sample survey. The data 
locations may be points, regions, line segments, or curves, they may be regularly or 
irregularly spaced; they may be regularly or irregularly shaped; and they may belong to 
a Euclidean or non-Euclidean space (e.g. the surface of a sphere). The mechanism that 
generates the data locations may be random or non-random, and may be related or 
unrelated to the processes that govern the observations. 
 
Notwithstanding the immensity of the subject, three specific subfields of spatial 
statistics are most important, as measured by the amount of attention they have received 
and the amount of methodology that has been developed.  These three subfields, known 
as geostatistics, lattice data analysis, and spatial point pattern analysis, are distinguished 
by data type. Roughly, geostatistical data are point observations of a continuously 
varying quantity over a region in space; lattice data are counts or spatial averages of a 
quantity over sub-regions of a larger region; and a spatial point pattern is an 
arrangement of a countable number of points within a region. Examples of geostatistical 
data abound in geology and mining, from which the name was originally derived, but 
they also occur in hydrology, atmospheric science, and other fields. Specific examples 
would include the richness of iron ore within an ore body, annual acid rain deposition at 
point sites in the eastern U.S., and the level of electrical activity at point sites in the 
human brain in response to a specific stimulus. Lattice data include, for example, pixel 
values from remote sensing of natural resources. Further examples would include the 
presence or absence of a plant species in square blocks laid out over a prairie remnant, 
and the number of deaths due to lung cancer in the counties (or other administrative 
districts) of a nation.  The third type, spatial point pattern data, arise in many diverse 
fields including forestry (e.g. locations of trees in a forest), astronomy (e.g. locations of 
craters on the moon), and epidemiology (e.g. locations of lung cancer cases in relation 
to the location of an incinerator). 
 
The distinctions between these three main types are not always clear-cut. In particular, 
lattice data have some similarities with the other two types. Indeed, some lattice data 
may be the result of integrating a geostatistical process, and other lattice data may result 
from aggregating a spatial point pattern. Thus, statistical methodology for lattice data 
borrows substantially from that for the other two types. 
 
Why has spatial spatisitcs emerged, over the past 20 years, as a distinct and important 
area within statistics? There are many reasons. One factor has been a growing 
awareness that data collected in space, like data collected over time, tend to exhibit 
statistical dependence. One commonly exhibited form of dependence is spatial 
continuity, which says merely that observations taken at two sites tend to be more alike 
if the sites are close together than if the sites are far apart. The existence of this or other 
kinds of dependence would cast the results of a classical statistical analysis, based on an 
assumption of independent observations, into doubt. Two examples will serve to make 
this point.  
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Consider a situation in which 16 observations are taken at point sites forming a 4 by 4 
square grid. Suppose that these observations have common mean μ  and common 
variance 1, but are spatially correlated. Specifically, suppose that the correlation 
between an observation taken in row i and column j and an observation taken in row k 

and column l is equal to0.5 i k j l− + − . Suppose we wish to estimateμ   by the sample 

mean, Y , of the observations. If there were no spatial correlation, then the variance of 
Y   would of course be equal to 1/16. But with the spatial correlation properly 
accounted for, it can be shown that the variance of Y  is equal to ¼. Thus, failing to 
account for spatial correlation would lead to understating the sampling variance by a 
factor of four. 
 
As a second example of the importance of accounting for spatial structure, consider a 
situation in which one wants to estimate the number of plants, N, of a certain species 
that live within a region of interest. One method for estimating N is based on measuring 
the distance, say Xi, to the nearest plant from each of several, say m, fixed points 
interspersed throughout the region. If the plant locations are completely spatially 
random, i.e. if they are a random sample from a uniform distribution over the study 

area, then the maximum likelihood estimator of N isl 2
1/ iiN A X== ∑ πmm , where A is 

the area of the region of interest. If the plant locations are not completely spatially 
random, however, then N̂  can be badly biased. For example, if the plants tend to occur 
in clusters separated by large areas void of plants, then N̂  can badly underestimate the 
total number of plants. 
 
Another factor that has contributed to the rise of spatial statistics is an increased interest 
in estimation or otherwise characterizing spatial dependence for its own sake. For 
instance, knowledge of the extent to which the spatial distribution of two plant species 
co-vary can shed light on whether the two species have some kind of mutualistic 
association, no association, or a competitive association. Knowledge of the nature of 
spatial dependence of crop yields in a field can lead to a selection of plot size and shape 
that maximize the information content of subsequent variety trials or other experiments 
carried out on that field. 
 
Finally, the tremendous increase in computational capability has played an important 
role in the development of spatial statistics. Many inference procedures for spatial data 
are much more computationally intensive than classical procedures. Faster computers 
and better algorithms have rendered practical computations that would otherwise be 
impractical. 
 
This article gives a brief overview of statistical models for univariate geostatistical, 
lattice, and spatial point pattern data. Modeling themes common to all three data types 
are emphasized. In addition, some basic structural identification procedures for each 
data type are described. Finally, maximum likelihood estimation and spatial prediction 
are briefly reviewed. For concreteness we assume throughout that the region of interest 
lies in two-dimensional Euclidean space. 
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2. Models 
 
2.1. Geostatistical Models 
 
Let 1 2, ,....,Z Z Zn  denote n   observations of a quantity of interest at n  point sites 
s1,….,sn in a region of interest D. The point sites are assumed fixed, and if this is not so 
then all inferences must be regarded as conditional on the observed point sites. This is a 
situation similar to that of classical linear regression, in which inferences must be 
interpreted as conditional on the realized values of the regressor variables. 
 
The framework for modeling geostatistical data is the assumption that the observations 
represent a finite sample from a realization of a random process { ( ) : }Z D∈s s . Within 
this framework it is further assumed that 
 
( ) ( ) ( )Z = +s s sm ε  

 
where [ ]( ) ( )E Z≡s sm  is known as the mean function of the process and 
{ ( ) : }D∈s sε  is a zero-mean random process. This model decomposes the total 
variation of the quantity of interest over D into large-scale variation (the mean function) 
and small-scale variation (the residual process). The residual process has associated 
with it a covariance function, which expresses the covariance between two values of  

( )⋅ε  as a function of the coordinates of the two corresponding sites, i.e. 
 

( ) cov{ ( ), ( )}
cov{ ( ), ( )}.

C
Z Z
≡

=
s,t s t

s t
ε ε

 

 
The mean function is generally not constrained, but the principle of spatial continuity 
suggests that it may often be sensible to take it to be continuous and relatively smooth. 
The covariance function, however, must satisfy two properties. First, it must be 
symmetric, i.e., ( ) (C C=s,t t,s)  for all Ds,t ∈ . Second, it must be nonnegative 
definite, i.e., 
 

1 1
( , ) 0i j i j

i j
a a C

= =
≥∑∑ s s

n n
 

 
for all n , all sequences { : 1,..., }ia i = n , and all sequences of spatial locations 
{ : 1,..., }i D i∈ =s n . 
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Thus, the modeling of geostatistical data involves supposing that ( )i iZ Z= s  and then 
making choices of a mean function and a valid covariance function. Generally, it is 
assumed that these functions belong to certain parametric families with unknown 
parameter values. Accordingly, the mean function is rewritten as ( ; )sm β  and the 
covariance function as ( ; )C s,t θ  where β  and θ  are unknown parameters to be 
estimated. Since the data generally originate from only one realization, some further 
assumptions about the residual process must be made for parameter estimation and other 
types of inference to be possible. One useful assumption is stationarity, which asserts 
that even a single realization of the process has a certain kind of replication built into it. 
Two well-known types of stationarity are strict stationarity and second-order (or 
covariance) stationarity. The former stipulates that the joint probability distribution of 
the residuals depends only on the relative positions of the sites at which the data were 
taken. The latter is weaker than the former and stipulates only that the covariance 
between residuals at two sites depends on the sites’ relative positions. In practice, an 
assumption of second-order stationarity is sufficient for point estimation but a 
distributional assumption (e.g. normality) may be needed for other inference purposes. 
Furthermore, the principle of spatial continuity suggests that emphasis be given to 
covariance functions that decrease monotonically to zero as the inter-site distance, 

1/ 2[(  - ) '( )]s t s - t increases (in any direction). Additionally, the property of isotropy, 
whereby the covariance function depends on sites only through the Euclidean distance 
between them, may be assumed for convenience. 
 
What are some common choices for the mean and covariance functions? Ideally, a 
parametric mean function should be flexible enough to approximate closely surfaces of 
various shapes yet parsimonious enough to be estimated well. A family of mean 
functions that has proven to be useful is the polynomial family of order q, given by 

 
( ) ( ) ( )0 1 1; ... ,p pf f= + + +s s sβ β βm β  

 
where 1{ ( ),...., ( )}pf fs s  are pure and mixed monomials of degree q≤  in the 
coordinates of s. For example, in two dimensions, with a site’s coordinates denoted as s 
= (x, y), the full first-order and second-order polynomials are as follows: 
 
( ) 0 1 2, ; ,x y x= + +β β βm yβ  

 
( ) 0 1 2

2 2
11 12 22

, ;x y x

x x

= + +

+ + +

m y

y y

β β β β

β β β
 

 
Other parametric families, including trigonometric and other nonlinear functions, are 
possible but are used rather less often. 
 
Ideally a covariance function, like a mean function, should be flexible yet parsimonious. 
Three popular parsimonious covariance models are the spherical model 
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the exponential model 
 
( ) { } ( )0 1 20; exp ,rC r I rθ θ θ== + −θ  

 
and the Gaussian model 
 

( ) { } ( )2
0 1 20; exp .rC r I rθ θ θ== + −θ  

 
Here, r is the Euclidean distance between sites, { 0}r=I  is an indicator function equal to 
1 if r = 0 and 0 otherwise, and the allowable parameter space is  
 

0 1 2

0 1 2

{( , , ) :
0, 0, 0}.

θ θ θ
θ θ θ> ≥ ≥

 

 
In each of these models, the covariance is a monotone decreasing function of inter-site 
distance, vanishing to zero as the inter-site decreases. However, the parabolic behavior 
of the Gaussian model near r = 0 contrasts with the linear behavior there of the other 
two models, and confers a much smoother behavior upon the corresponding random 
process. 
 
The isotropic models just given may be generalized to geometrically anisotropic models 
by replacing r with 1/ 2[( ' ]s - t) Α(s - t)  where A is any positive definite matrix. 
Geometrically anisotropic models allow for the modeling of stronger dependence in 
some directions than in others. 
 
Historically, practitioners of geostatistics have adopted a slightly more general kind of 
stationarity assumption than second-order stationarity, and they have modeled the 
small-scale spatial dependence through a function somewhat different from the 
covariance function. The more general stationarity assumption is called intrinsic 
stationarity, and it specifies that the residuals have mean zero and that 

[ ]1
2 var ( ) ( )−s tε ε  depends only on the lag s – t, i.e., 

 

( ) ( ) ( )1 var ,
2

− =⎡ ⎤⎣ ⎦s t s - tε ε γ  for all .D∈s,t  
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The function ( )⋅γ  just defined is called the semivariogram. A second-order stationary 
random process with covariance function ( )C ⋅  is intrinsically stationary, with 
semivariogram 
 

( ) ( ) ( )C C= −h 0 hγ  
 
but the converse is not true in general. That is, there exist processes that are intrinsically 
stationary but not second-order stationary. For second-order stationary processes, 
however, the spatial dependence can be described by either the covariance function or 
the semivariogram. 
 
2.2 Lattice Models 
 
Let 1 2, ,...,Z Z Zn  denote lattice data at n  sites. As is the case for geostatistical data, it 
is useful to regard lattice data as derived from a single realization of a random process. 
In contrast to geostatistical data, however, a lattice process is often observed at every 
site at which it occurs. Therefore, it suffices to adopt a model for the quantity of interest 
at the sites where it is actually observed rather than at all points within a region 
 
Nevertheless, models similar to geostatistical models can be used for lattice data. That 
is, a mean function and a covariance function can be defined that are entirely equivalent 
to functions used for geostatistical data save that the index set on which they are defined 
is finite. When the sites are regions, this commonly involves assuming that the 
observation for each region occurs at the centroid of the region. This assumption is 
somewhat arbitrary, so alternative models analogous to time series models have 
received considerable attention. These analogues require that a set of “neighbors” be 
defined for each site. For example, if sites are contiguous regions (e.g. counties or other 
administrative units), then commonly a site’s neighbors are defined to be those other 
sites with which it shares a border. 
 
Two popular models that incorporate this discrete neighbor information are the 
simultaneous autoregressive (SAR) and conditional autoregressive (CAR) models. The 
Gaussian SAR model is given by 

 

( )

( )2

,

0, , 1,..., ,

i i ij j j i
j

i

Z S Z

N i

− = − +

=

∑

∼

μ μ

σ

ε

ε n
 

 
where ( )i iE Z=μ  and { }ijS≡S  is a matrix of fixed parameters such that 0iiS =  
and I – S is nonsingular. The Gaussian CAR is specified by 
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2

, (

( ), ), 1,...,

i j i

ij j j
j

Z Z j i N

C Z i

≠ +

− =∑

∼ μ

μ σ n  

 
where { }ijC≡C  is such that 0iiC =  and I – C is symmetric and positive definite. 
 
Though similar in form, the SAR and CAR models are different, i.e., if we take 

ij ijC S=  the CAR yields responses whose joint distribution is different from for the 

SAR. The joint distribution of 1,...,Z Zn  is 2 1 1( , ( ) ( ') )N − −I - S I - Sσμ  under the 

SAR and 2 1( , ( ) )N −I - Cσμ  under the CAR, when ( )i= μμ  
 
The SAR and CAR models as given above have too many unknown parameters to be 
useful in practice. Typically, these models are parameterized in terms of a single 
parameter and a given neighborhood structure. Thus, for the SAR model s=S Wρ  and 
for the CAR model c=C Wρ  where W is a neighborhood matrix whose (i, j)th 
element is equal to 1 if region i and region ( )j i j≠  share a common boundary, and is 
equal to zero otherwise, and sρ  or cρ  is a spatial dependence parameter to be 
estimated. 
 
For completeness we mention spatial moving average models. These models can be 
represented, in general, as follows: 
 

, 1,...,i i ij j
j

Z M i− = =∑μ nε  

 
where the ijM ’s are unknown parameters satisfying 1iiM =  and the iε ’s are 

independent and identically distributed as 2(0, )N σ . The joint distribution of 

1,...,Z Zn  is 2( , ')N MMσμ  where ( )ijM=M . Similar to the case for SAR and 

CAR models, M is usually modeled very parsimoniously, e.g. as =M ρmW   where 
ρm  is a spatial dependence parameter and W is a neighborhood matrix. 
 
 
- 
- 
- 
 

 
TO ACCESS ALL THE 24 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E4-26-02


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ENVIRONMETRICS - Spatial Statistics - Dale L. Zimmerman 
 

©Encyclopedia of Life Support Systems (EOLSS) 

 
Bibliography 
 
Chilés, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty, New York: Wiley. [A 
thorough exposition of the theory underlying geostatistics.] 

Cliff, A.D. and Ord, J.K. (1981). Spatial Processes: Models and Applications, London: Pion. [One of the 
earliest books on spatial statistics.  Emphasizes measures of autocorrelation, models, and inference for 
lattice data.] 

Cressie, N.A.C. (1993). Statistics for Spatial Data, New York: Wiley. [A  comprehensive  reference  on 
spatial statistics, reviewing most of the relevant literature  through the early 1990’s.   Covers geostatistics, 
lattice data, spatial point patterns, and random sets.] 

Diggle, P.J. (1983). Statistical Analysis of  Spatial Point Patterns, London: Academic Press. [A classic on 
the theory and analysis of spatial point patterns.  Treats univariate and multivariate patterns at a moderate 
level of difficulty.] 

Haining, R. (1990). Spatial Data Analysis in the Social and Environmental Sciences, Cambridge: 
Cambridge University Press. [A readable account of geostatistics and lattice data analysis, with emphasis 
on the latter.   Does not include spatial point pattern analysis.] 

Ripley, B.D. (1981). Spatial Statistics, New York: Wiley. [One of the first books on spatial statistics.  
Treats spatial regression, lattice data analysis, spatial point patterns, and image analysis.] 

Stoyan, D. and Stoyan, H. (1994). Fractals, Random Shapes and Point Fields: Methods of Geometrical 
Statistics, Chichester: Wiley. [A geometrical approach to the modeling and analysis of spatial point 
patterns, random shapes, and fractals.] 

Upton, G.J. and Fingleton, B. (1985). Spatial Data Analysis By Example, New  York: Wiley. [An 
elementary treatment of spatial point pattern and lattice data analysis, replete with numerous interesting 
examples.  Does not include geostatistics.] 
 
Biographical Sketch 
 
Dale Zimmerman is Professor of Statistics at the University of Iowa. His research interests include 
ecological statistics, spatial statistics, and environmetrics.  One active area of his research is statistical 
methodology for combining pollutant concentration data from several monitoring networks to produce 
better predictions of pollutant levels at unsampled sites. He is also currently developing stochastic models 
for animal movement in heterogeneous environments that combine temporal correlation in movements 
with resource selection. 
 


