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Summary 
 
A Hilbert space is a Banach space whose norm comes from an inner product, and it is 
the most natural infinite-dimensional generalization of the Euclidean space. Operators 
on a Hilbert space appear in many places, and may be viewed as matrices of infinite size. 
One can add and multiply them, and furthermore the *-operation (extending the notion 
of adjoint matrix) can be introduced due to the presence of an inner product. Operator 
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theory studies individual operators while the theory of operator algebras deals with *-
algebras of operators. C*-algebras and von Neumann algebras are particularly important 
classes of such *-algebras. In this chapter, some selected topics on operator theory, C*-
algebras, and von Neumann algebras are explained. 
 
1. Hilbert Space 
 
A pre-Hilbert space means a linear space H (usually over C) equipped with an inner 
product ,〈⋅ ⋅〉 satisfying  
(i)   ( , ) ,× → 〈 〉 CH Hξ η ξ η∈ ∈ is linear in the first variable ξ and conjugate linear  in 
the second variableη , 
(ii)   ,〈 〉 ≥ξ ξ 0 and ,〈 〉 =ξ ξ 0  iff  ξ = 0. 
 
By virtue of (ii) we can set , ( )= 〈 〉 ≥ξ ξ ξ 0 , the norm of ξ . The Cauchy-Schwarz 
inequality | , | || |||| ||〈 〉 ≤ξ η ξ η  guarantees that || ||⋅  is indeed a norm onH : 
(i)  || || | ||| ||=λξ λ ξ for Cλ ∈ , 
(ii) || || || || || ||+ ≤ +ξ η ξ η (Triangle inequality), 
(iii) || ||=ξ 0  iff =ξ 0 . 
With this norm a pre-Hilbert space H� becomes a normed linear space so that 

( , ) || ||d = −ξ η ξ η defines a metric: a sequence 1,2{ } =ξ n converges to ξ when 

lim ( , )d→ =ξ ξ 0n n∞ . When this metric is complete (every Cauchy sequence is 
convergent), H is called a Hilbert space. In other words, H is a Hilbert space when 
H equipped with the associated norm || ||⋅  is a Banach space. The norm || ||⋅  (from 

,〈⋅ ⋅〉 as above) satisfies 
 

( )2 2 2 2|| || || ||+ + − = +ξ η ξ η ξ η2   (Parallelogram law) 
3

2

0
, || ||

=
〈 〉 = +∑ξ η ξ η

1
4

k k

k

i i  (Polarization identity) 

 
with = −1i . The parallelogram law is of fundamental importance in handling Hilbert 
spaces, and it actually characterizes Hilbert spaces. In fact, when the norm || ||⋅  of a 
Banach space H�satisfies the parallelogram law, the right side of the polarization 
identity gives rise to an inner product whose associated norm is || ||⋅ . 
 
The n -dimensional vectors Cn (with the ordinary vector operations) form a Hilbert 
space with the inner product 
 

1
,

=
〈 〉 = ∑ξ η ξ η

n

k k
k

for 1 2 1 2( , ,..., ), ( , ,..., )n= = Cξ ξ ξ ξ η η η η ∈ n
n . 

The associated norm is
2

1|| || | |== ∑ξ ξn
kk

, the Euclidean distance. More interesting 

(infinite-dimensional) examples are as follows: 
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(i)  2 ( ; ),L d= RH� x which is the space of measurable functions ( )f x on R satisfying the 
square integrability condition 
 

2
( )f d

∞

−∞
<∫ x x ∞ , 

 
where dx is the Lebesgue measure on the real line R and functions are being identified 
if they differ only on a null set. The linear structure here is given by the point-wise sum 
of functions, and , ( ) ( )f f d∞

−∞〈 〉 = ∫g x g x x gives rise to an inner product.  
 
(ii) Any measure space gives rise to a Hilbert space as in (i). One important special case 
is N equipped with the counting measure: 

2 {= the space of sequences 1,2...{ } ==ξ ξk k satisfying 2
1| | }= <∑ ξkk

∞ ∞ with the inner 

product 1, =〈 〉 =∑ξ η ξ ηk kk
∞ . 

 
(iii) Let 2H be the set of analytic functions f on the open disk { ; | | }= <D C∈ 1z z  
satisfying 

1 22 2
2 01

1lim | ( ) |
2

f f e d
π θ θ

π
⎛ ⎞= <⎜ ⎟
⎝ ⎠∫ i

r
r ∞ . 

 
This space can be naturally identified as a closed subspace of the 2L -space 

2 ( ; 2 )L dθ πT over the torus =T D∂ (as will be explained shortly). Hence, 2H itself is a 
Hilbert space, known as the Hardy space. 
 
A family { }eα α Λ∈ in H is called an orthogonal system when 1eα = and 

, 0e eα β〈 〉 = forα β≠ . Furthermore, when linear combinations of eα ’s form a dense 
subspace, it is called an orthogonal basis. In many practical situations Hilbert spaces are 
separable (i.e., possessing a dense sequence) so that separability will be assumed in the 
rest of our discussion. Then, the above index set Λ is (at most) countable, and hence an 
orthogonal basis is actually a sequence 1,2,...{ }e =n n (or a finite sequence 

1,2,...,{ }e =n n m when dim )< ∞H . With such a basis an arbitrary element ξ H∈ can be 

expressed as 1 1, ( lim , )e e e eξ ξ∞
→∞= =〈 〉 = 〈 〉∑ ∑nk k n k kk k

with 2
1,2,...{ , }eξ =〈 〉 ∈k k . 

Consequently, infinite-dimensional (separable) Hilbert spaces are all isomorphic to 2 , 
and in particular the above 2 ( ; )L dR x is also isomorphic to 2 as a Hilbert space. 
 
Let { } 2( ( ; / 2 ))e L dθ πZ T∈n n

⊆ be the (exponential) orthonormal basis defined 

by int( ) ( )it ite e e e= T∈n . The expression f a e=∑ Z∈ n nn
for 2 ( ; / 2 )f L dθ πT∈ with 

,a f e= 〈 〉n n is nothing but the Fourier series expansion. Then the above Hardy space 
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2H can be identified with the closed subspace generated by 0,1,2,...{ }e =n n . More precisely, 

for 2f H∈ radial limits 1( ) lim ( )it itF e f e= r r exist almost everywhere (a.e.) on the 

torus T. Then the “radial limit” function ( )itF e sits in 2 ( ; / 2 )L dθ πT and indeed falls 
into the above mentioned closed subspace, i.e., 

0( )itF e a e∞
==∑ n nk

with
2 1 2

2 0( )f a∞
== ∑n . The analytic function 2f H∈ is 

recovered from F by making use of the Poisson integral, and also the power series 
expansion 0( )f a∞

==∑ n
nk

z z is valid on D. 
 
A linear functional : →CHϕ is called bounded if  sup{| }ξ ξ= < ∞1H∈ϕ ϕ( )|; , 

where { 1}ξ ξ= ≤1H H�∈ ; is the unit ball. Let ∗H (the dual space ofH ) be the set of 
all bounded linear functionals onH . With the obvious linear structure and the above 
norm ⋅ , the dual space ∗H  is a Banach space. For a general Banach space the fact 

that the dual ∗H  contains an abundance of elements is not so obvious and in fact it 
follows form the Hahn-Banach theorem. However, for the Hilbert space case it is easy. 
Indeed any η H∈ induces the bounded linear functional : ,ξ ξ η→ 〈 〉 C∈nϕ  

with η η=ϕ . The Riesz theorem asserts that every element in the dual ∗H arises in 

this way, which plays an important role in many places. 
 
2. Bounded Linear Operator 
 
A linear operator on a Hilbert space H means a linear map :T →H H . A linear 
operator T is continuous iff it is bounded, i.e. supT Tξ ξ= < ∞

1H∈
. Many natural 

linear operators (such as differential operators on function spaces) are unbounded, and 
very beautiful and useful theories on unbounded operators are known. However, we will 
mainly deal with bounded linear operators, and they will be simply called operators in 
what follows. The quantity T is referred to as the operator norm of T. It is indeed a 
norm on the set ( )B H of all (bounded linear) operators with the obvious linear structure, 
and ( )B H is a Banach space. For operators , ( )T S B H∈ we have TS T S≤  so that 

( )B H is actually a Banach algebra with the unit 1, the identity operator. Linear 
operators on a Banach space can be also considered, but the theory of operators on a 
Hilbert space is much richer than the theory of those on a Banach space. What makes 
the former so is the adjoint operation. Namely, for ( )T B H∈ there is a unique operator S 

(denoted byT ∗ , the adjoint of T) satisfying  
 

, ,T Sξ η ξ η〈 〉 = 〈 〉 for each ,ξ η H∈  
 
(by virtue of the Riesz theorem), which makes ( )B H a ∗ -Banach algebra (i.e., a Banach 

algebra with an involution * satisfying|| || | ||)T T∗ = . 
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When dim , ( )B= < ∞H� Hn is the space of ×n n -matrices. Hence an operator can be 
regarded as a “matrix of infinite size”, and one naturally tries to generalize what is 
known for matrices to the operator setting (although such generalizations are impossible 
in many cases at least in a straight-forward fashion). Besides the norm topology induced 
by ⋅ , the strong operator topology and weak operator topology are often considered 
and useful. They are the linear topologies determined by the following families of semi-
norms: 
 
{ ( )}ξ ξ⋅ H∈p with ( )T Tξ ξ=p  (strong operator topology), 
 

, ,{ ( )}ξ η ξ η⋅ ∈Hp with , ( ) ,T Tξ η ξ η= 〈 〉p  (weak operator topology). 
 
2.1. Compact Operator 
   
An operator ( )T B H∈ is called a compact operator if T 1H is relatively compact in the 
norm topology ( T 1H is automatically closed when H is a Hilbert space). The set 

( ( ))HK = K of all compact operators is a norm closed two-sided ideal (actually the only 
non-trivial one) in ( )B H . For compact operators some results for matrices can be 
generalized in the most straight-forward fashion. For example, as a generalization of 
diagonalization by a unitary matrix, one can show the following: if a compact operator 
T is normal (i.e.,TT T T∗ ∗= ), then one can find an orthogonal basis 1,2,...{ }e =k k such that 

Te e=k k kλ for some C∈kλ , that is, T is unitarily equivalent to an infinite diagonal 
matrix. Furthermore, when kλ ’s are arranged in such a way that |k| λ ’s are in decreasing 
order, then we must have lim 0→∞ =k kλ . 
 
2.2. Miscellaneous Operators 
 
(i) An operator T is called self-adjoint ifT T∗ = , that is, ,Tξ ξ〈 〉 R∈ forξ H∈ . A self-
adjoint operator S  is called positive ( 0)S ≥ if , 0Sξ ξ〈 〉 ≥ for ξ H∈ . For self-
adjoint operators 1 2,S S we consider the order 1 2S S≥ defined by 1 2 0S S− ≥ . For an 

operator S  the following conditions are equivalent: (a) S is positive, (b) S A A∗= with 
some ( )A B H∈ , (c) 2S B= with a positive operator B . In the last condition a positive 
operator B is uniquely determined, and denoted by S (the square root of S ).  
 
(ii) For a closed subspace K  in , { ; , 0η η ξ= 〈 〉 =H K H�∈⊥ for each }ξ ∈K  is called 
the orthogonal complement of K . Any element ξ H∈ can be written uniquely as 

1 2ξ ξ ξ= + with 1ξ K∈ and 2ξ K∈ ⊥ . The 

operator ( ) :P P ξ ξ= →K 1H∈ satisfies 2 *P P P= = . Such an operator is called a 
projection. Every projection P arises in this way with P=K� H so that the projections 
and the closed subspaces are in bijective correspondence.  
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(iii) An operator U is called a partial isometry if U U∗ is a projection (or equivalently 
UU ∗  is a projection). The projections U U∗ , UU ∗ are called the initial and final 
projections of U. The name partial isometry is justified by the following properties: (a) 
U sends U U∗ H  onto  isometrically, (b) U acts as the zero operator in the orthogonal 
complement ( )U U∗ H ⊥ . 
 
(iv) When U U∗ = UU ∗ = 1, U is called a unitary operator. On the other hand, 
when 1S S∗ = , it is called an isometry. Note that 1S S∗ = does not imply 1SS∗ = (unless 
dim < ∞H ). A typical example is the unilateral shift operator 0 0 1:S S e e +=k k with an 

orthonormal basis 0,1,{ } ...e =k k . In fact, *
0 0S S is the projection onto the closed subspace 

(of co-dimension one) generated by 1,2,{ } ...e =k k  
 
2.3. Polar Decomposition and Spectral Decomposition 
 
For an operator T we can find a partial isometry U and a positive operator S satisfying T 
= US in such a way that the support projection of S (i.e, the smallest projection P 
satisfying PS = S) coincides with the initial projection U U∗ . The above partial 
isometry U and positive operator T are unique subject to the conditions mentioned so far. 
This decomposition is called the polar decomposition of T. The positive operator S 

(usually denoted by |T|) is actually the positive square root T T∗ . 
 
For a self-adjoint operator T we can find a family { }E R∈λ λ of projections satisfying  
(i) E→R∈ λλ is increasing, E ≤λ μΕ  if ≤λ μ  

(ii) ( )0E T= < −λ λ and ( )1E T= ≥λ λ , 

(iii) E→R∈ λλ is continuous from the right in the strong operator topology, 

(iv)T d
∞

−∞
= ∫ λλ Ε . 

 
From (i) and (iii) the function 2,E Eξ ξ ξ→ 〈 〉 =λ λλ is increasing and continuous from 
the right for eachξ H∈ , and (iv) (spectral decomposition of T) means  

2,T d Eξ ξ ξ
∞

−∞
〈 〉 = ∫ λλ  (for eachξ H∈ ), 

 
where the right side is understood in the Stieltjes sense. The family { }E R∈λ λ is called a 
spectral family. This technique enables us to perform functional calculus f (T) of T for a 

bounded Borel function f on R via
2

( ) , (f T f d Eξ ξ ξ
∞

−∞
〈 〉 = ∫ λλ) . For unbounded self-

adjoint operators spectral families are also available, however the condition (ii) is 
replaced by the more general condition: lim E E→−∞ →= =λ λ λ0and lim 1λ ∞ in the 
strong operator topology. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. II - Operator Theory and Operator Algebra - H. Kosaki 

©Encyclopedia of Life Support Systems (EOLSS) 

2.4. Spectrum 
 
A complex number λ is called a resolvent of ( )T B H�∈ when the operator Tλ1− is 
invertible in ( )B H�. The complement of the set of all resolvents is denoted by ( )Tσ , the 
spectrum of T. Note that the H is finite-dimensional ( )Tσ is simply the set of all 
eigenvalues of a matrix T.  
 
However, the behavior of ( ) ( )Tσ C⊆ for an infinite dimensional operator is much 
more subtle. Nevertheless, the spectrum serves as a fundamental tool for handling 
operators. The spectrum ( )Tσ is known to be a non-empty closed set sitting in the 
closed disk of radius T . 
 
 On the other hand, the spectrum ( )e Tσ defined similarly at the level of the quotient 

C∗ -algebra ( ) /B H� HK( ) (see Section 4.1) is referred to as the essential spectrum of T. 
The classical Weyl-von Neumann theorem states that self-adjoint operators 1 2,T T are 

unitarily equivalent modulo the compact operators 1 2( . .,i e T UT U ∗− ∈K K for some 
unitary operator U) iff 1 2( ) ( )e eT Tσ σ= .  
 
The same characterization remains valid for normal operators (Berg and Sikonia 
independently, 1971). 
UU ∗H  
 
3. Operator Theory 
 
Operator theory studies individual operators, and it is very diverse. Some selected topics 
are briefly outlined in the following.  
 
3.1. Dilation Theory 
 
Let ( )T B H�∈ be a contraction (i.e., 1)T ≤ . Sz. Nagy (1960) showed that one can find 
a Hilbert space L containing H  and a unitary operator U on L such that  
 

|T P U= H H
n n  (for each n  = 0,1,2,….) 

 
with the projection ( )P BH L∈� ontoH . Furthermore, the above unitary U (called a 
unitary dilation of T) is unique under a certain minimality condition. Various results on 
dilations are known, and such a dilation technique is useful in operator theory.  
 
For example, the following inequality (originally due to von Neumann, 1951) is an 
immediate consequence of the preceding result: For a contraction T and a polynomial 

( )p x we have 
 

( ) max{| ( ) |; 1}T ≤ ≤p p λ λ . 
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