
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Set Theory - John R. Steel 

©Encyclopedia of Life Support Systems (EOLSS) 

SET THEORY  
 
John R. Steel 
Department of Mathematics, University of California, Berkeley, CA. USA  
 
Keywords: Aronszajn tree, Axiom of Choice, Axiom of Infinity, Borel determinacy, 
cardinal number, closed unbounded set, Cohen’s forcing method, Cohen real, 
consistency strength, constructible set, Continuum Hypothesis, Covering lemma, 
countable set, cumulative hierarchy of sets, descriptive set theory, diamond sequence, 
elementary embedding, fine structure theory, Fodor’s lemma, forcing conditions, 
generic absoluteness, generic extension, generic filter, inner model, iterated ultrapower, 
large cardinal hypothesis, Lebesgue measure, Levy hierarchy, Levy collapse, Martin’s 
Axiom, Martin’s Maximum, measurable cardinal, ordinal number, Powerset Axiom, 
projective determinacy, random real, relative consistency, Reflection Principle, regular 
cardinal, set theory, singular cardinal, stationary set, super-compact cardinal, Suslin’s 
Hypothesis, Suslin tree, transfinite induction, transitive model, transitive set, ultrafilter, 
wellfounded relation, wellorder, Woodin cardinal, Zermelo-Fraenkel Set Theory.  
 
Contents  
 
1.  Introduction  
2.  Some elementary tools 
2.1. Ordinals  
2.2. The Wellordering Theorem  
2.3. The Cumulative Hierarchy; Proper Classes  
2.4. Cardinals  
2.5. Cofinality, Inaccessibility, and König’s Theorem 
2.6. Club and Stationary Sets  
2.7. Trees  
2.8. Transitive Models and the Levy Hierarchy  
2.9. Large Cardinals and the Consistency-Strength Hierarchy  
3.  Constructible sets 
3.1. Gödel’s Work on L  
3.2. Suslin Trees, ◊ and   
3.3. Canonical Inner Models Larger Than L  
4.  Forcing 
4.1. The Basics of Forcing  
4.2. ¬CH via Adding Cohen Reals  
4.3. Easton’s theorem  
4.4. The Singular Cardinals Problem  
4.5. A model where the Axiom of Choice fails  
4.6. Cardinal Collapsing and Solovay’s Model  
4.7. Suslin’s Hypothesis and Martin’s Axiom  
4.8. Martin’s Maximum  
5.  Descriptive set theory 
5.1. Gödel’s Program  
5.2. Classical Descriptive Set Theory  
5.3. Determinacy  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Set Theory - John R. Steel 

©Encyclopedia of Life Support Systems (EOLSS) 

5.4. Large Cardinals and Determinacy  
5.5. Generic Absoluteness and CH 
6. Other topics 
Glossary 
Biographical Sketch 
 
Summary  
 
All mathematical statements can be expressed in the very simple language of set theory, 
whose quantifiers are understood as ranging over sets, and whose only nonlogical 
symbol ∈ stands for the membership relation. All mathematical proofs to date can be 
carried out granted certain basic axioms about sets. In this sense, the general theory of 
sets is a foundation for all of mathematics.  
 
The vast majority of mathematical proofs require no more than the axioms of Zermelo-
Fraenkel set theory with Choice, or ZFC. Nevertheless, a surprising number of quite 
basic questions about sets in general are not decided by the axioms of ZFC; moreover 
many of the more abstract questions of analysis, algebra, and topology are left similarly 
undecided. Perhaps the most famous of the undecided questions is Cantor’s Continuum 
Problem: what is the cardinality of the set of all real numbers?  
 
In this article we shall describe some of the basic ideas of the general theory of sets, and 
then move to an exposition of the methods by which one can show that a given 
statement in the language of set theory is not decided by ZFC. We conclude with a 
discussion of extensions of ZFC obtained by strengthening the Axiom of Infinity, and 
show that these suffice to remove the incompleteness of ZFC in one important realm.  
 
1. Introduction  
 
Much of set theory is motivated by the simple question  
 
What are the proper axioms for mathematics?  
 
Mathematicians prove things for a living; what should they take as their common 
assumptions in these proofs?  
 
In a sense, this question goes back to Euclid, although in his day, merely axiomatizing 
geometry was a great achievement. It was through Descartes’ reduction of geometry to 
analysis, the reduction of analysis to arithmetic by 19th century mathematicians such as 
Cauchy and Dedekind, and the reduction of arithmetic to set theory by Gottlob Frege, 
that the project of axiomatizing all of mathematics became feasible around the turn of 
the 20th century. These reductions showed that all of the mathematics of the time could 
be expressed in the very simple language of set theory, whose quantifiers are 
understood as ranging over pure sets, and whose only non-logical symbol ∈ is 
interpreted as standing for the membership relation. The pure sets are just those built up 
from the empty set by repeatedly forming sets of objects previously constructed in a 
process which is iterated into the transfinite. Since we shall not need to consider impure 
sets (such as the set of knives in my cabinet), henceforth we use set to mean pure set.  
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In the period 1905-1927, Russell, Zermelo, Fraenkel, and Skolem isolated an elegant list 
of basic statements about sets, expressed in the language of set theory, and showed that 
from these axioms one could derive all of the mathematics of the time. This system of 
axioms is now known as Zermelo-Fraenkel Set Theory with Choice, or ZFC. Most of its 
axioms are set-existence axioms; for example, the Axiom of Infinity asserts that there is 
an infinite set, and the Powerset Axiom asserts that for every set x, there is a set P (x) 
whose members are precisely the subsets of x. (See Formal Logic for further 
discussion.) ZFC is a good provisional answer to the question with which we began, and 
it is still true today that almost everything that mathematicians have proved has been 
derived from its axioms. 
  
While there is still no hint of a mathematical statement which cannot be expressed in the 
language of set theory, we have discovered that ZFC is incomplete in important ways. A 
surprising number of quite basic questions about sets in general are not decided by the 
axioms of ZFC; moreover, many of the more abstract questions of analysis, algebra, and 
topology are similarly left undecided. Here is a list of some examples.  
 
The Continuum Hypothesis.  
 
The first theorem of general set theory was Cantor’s remarkable discovery, in 1873, that 
infinite sets come in different sizes. Cantor showed that for any set x, there are strictly 
more subsets of x than there are elements of x; in modern cardinality notation, that |x|< 
|P (x)|for all x. He naturally asked whether for infinite x there are any sets of 
intermediate size. The Generalized Continuum Hypothesis, or GCH, asserts that there 
are not, that is, that for all infinite x, ( )P x x += ,where x + is the least cardinal strictly 
greater than |x|. The special case in which |x|= ω is the smallest infinite cardinal is called 
the Continuum Hypothesis, or CH, because in this case ( )P x = \ . Calling a set 
countable if it is either finite or equinumerous with the set ω of all natural numbers, the 
Continuum Hypothesis is equivalent to the statement that every uncountable set of real 
numbers is equinumerous with the set \  of all real numbers.  
 
In 1937, Gödel produced a model of ZFC in which the GCH is true. In 1963, Cohen 
produced a family of models of ZFC in which the CH is false; there are, as we shall see, 
many possibilities for the function ( )x P x6  in such models. By itself, ZFC has very 
little to say about one of the most basic problems in general set theory, the problem of 
counting the powerset of an infinite set.  
 
Suslin’s Hypothesis.  
 
A partial order is a structure ( ),P= ≤P , where ≤  is a reflexive, antisymmetric, 
transitive binary relation on P . P  is linear if for all , , orx y P x y y x∈ ≤ ≤ . If 

( , )L L= ≤  is a linear order with no largest or smallest element such that  
 
(1) Every X L⊆  which is bounded above has a least upper bound, and  
(2) there is an X L⊆  such that X ω=  and X is dense in L  
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(i.e., , ( ( ))a b L a b c X a c b∀ ∈ < →∃ ∈ < < , 
 
then L  is isomorphic to ( , )≤\\ , the real numbers with the standard order on them. In 

the 1920’s, Suslin conjectured that this characterization of ( , )≤\\  can be varied by 
replacing (2) with the ostensibly weaker  
 
(2a) if I  is a family of pairwise disjoint intervals of L , then I  is countable.  
 
A Suslin line is a linear order Lwithout endpoints satisfying (1) and (2a), but not 
isomorphic to ( , )≤\\ . Suslin’s Hypothesis (SH) asserts, confusingly enough, that there 
are no Suslin lines.  
 
In the late 1960’s, Jech used Cohen’s techniques to produce a model of ZFC is which 
there are Suslin lines. Not long afterward, Solovay and Tennenbaum extended Cohen’s 
technique in an important way, and thereby produced a model of ZFC in which there are 
no Suslin lines.  
 
Scales in ( ),ωω ≤∗ .  

We define the partial order of eventual domination on { : }f fωω ω ω= →⏐  by:  

f g≤∗  iff ( ( ) ( ))m n m f n g n∃ ∀ ≥ ≤ . A scale in ( , )ωω ≤∗  is a set S ωω⊆  which is 

linearly ordered by ≤∗  and cofinal, in the sense that ( )f g S f gωω∀ ∈ ∃ ∈ ≤∗ . It is not 
hard to see that CH implies that there is a scale. There are models of ZFC constructed 
by Cohen’s method in which CH is false and there are no scales, as well as models in 
which CH is false and nevertheless, there is a scale.  
 
Lebesgue Measure.  
 
In 1902, the analyst Lebesgue defined a natural measure μ  on certain sets of reals. If A 
is an interval, then ( )Aμ  is just its length. If A is open, then n nA Iω<= ∪  In where the 

nI  are disjoint intervals, and we set 1( ) ( )n nA Iμ μ∞
==Σ . If A is closed, then 

( ) 1 (( , 1) \ )nA n n Aμ μ∈= − +ZΣ . Finally, for arbitrary A, we define the outer measure  

( ) inf({ ( )A U Uμ μ+ = ⏐  is open and })A U⊆ , and inner measure  

( ) sup({ ( )A F Fμ μ− =  is closed and .})F A⊆ .  
 
We say that A is Lebesgue measurable iff ( ) ( )A Aμ μ+ −= , in which case we write 

( )Aμ  for the common value. Lebesgue’s measure leads to a natural and important 
extension of the Riemann integral to functions which may have infinitely many 
discontinuities.  
 
Lebesgue showed that the collection of Lebesgue measurable sets is closed under 
complements and countable unions, and therefore includes the class of Borel subsets of 
[0,1]. On the other hand, Vitali showed with a heavy use of the Axiom of Choice that 
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there is a non-Lebesgue-measurable set. His construction is the following: for 
, [0,1]x y∈ , let xEy x y⇔ −  is rational. E is an equivalence relation, and by the Axiom 

of Choice there is a set [0,1]A⊆  such that A meets each equivalence class of E in 
exactly one point. Suppose A were Lebesgue measurable, and consider the rational 
translations :[0,1] [0, 2]qT →  given by  
 

( )qT x x q= +  
  
for rational [0,1]q∈ . Our choice of A guarantees that the images ( )qT A  for q∈Q  are 
pairwise disjoint and cover [1, 2]. But Lebesgue measure is translation invariant, so 

( ) ( ( ))qA T Aμ μ=  for all q. Since Lebesgue measure is also countably additive, we have 
a contradiction: if ( ) 0Aμ = , then ([1,2]) 0μ = , and if ( ) 0Aμ > , then ([1,2])μ = ∞ .  
 
Vitali’s example illustrates the fact that arbitrary sets of reals may have no geometric 
content. A dramatic example of this phenomenon is the famous Banach-Tarski paradox: 
there is a decomposition of the unit ball in 3\ into finitely many pieces, which can be 
moved by translations and rotations to become a decomposition of the unit cube. The 
pieces in such a decomposition cannot be measurable with respect to the natural 
extension of Lebesgue measure to 3\ .  
 
It is natural to ask whether the sets more familiar to analysts, those given by some 
construction or definition, can exhibit such pathology, or whether they are all Lebesgue 
measurable. Gödel showed in 1937 that in his model of ZFC+ GCH, it is also true that 
there is a simply definable subset of [0, 1] which is not Lebesgue measurable. On the 
other hand, Solovay in 1965 was able to use Cohen’s technique to produce a model of 
ZFC in which all reasonably definable sets of reals are Lebesgue measurable.  
 
It is also natural to ask whether there is an extension of Lebesgue measure to a measure 
ν defined on all [0,1]A⊆ A ⊆ [0, 1]. (Such a measure ν cannot be translation-invariant, 
by Vitali’s argument.) In Gödel’s model, there is no such extension; on the other hand, 
Solovay in 1966 produced a model of ZFC in which there is such an extension.  
 
In the rest of this chapter we shall outline the independence techniques of Gödel and 
Cohen, and show how they apply to these and several other natural problems. The sheer 
volume of work in this vein can lead to the impression that the set-theorist’s sole 
function delivers to other mathematicians, often other set-theorists, the bad news that 
they will not be able to solve this or that problem. We hope to lead the reader to a 
different conclusion: that one of the most interesting and potentially useful global 
features of the universe V of all sets is that it has within it descriptions of many alternate 
universes satisfying various natural theories. These alternate universes are not so far 
from V in some ways; for example, they all have the same natural numbers as does V , 
so that any statement of number theory true in one of them is true in V . The study of 
such alternate universes is an inevitable and important part of the global theory of V .  
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We shall also introduce some plausible reinforcements of the Axiom of Infinity, and 
show that these strong axioms of infinity (also known as large cardinal hypotheses), 
decide many of the more concrete statements of mathematical interest which are left 
undecided by ZFC. This suggests that our answer to “Euclid’s question” is still 
evolving.  
 
2. Some Elementary Tools.  
 
We begin with a quick inventory of some of the more elementary ideas and results of set 
theory. The reader who would like a gentler and more thorough introduction to this 
material should see Formal Logic .  
 
2.1. Ordinals  
 
Transfinite induction is one of the signature methods of set theory. Indeed, set theory 
began with Cantor’s use of transfinite induction to study trigonometric series.  
 
A wellfounded relation is a binary relation R on a set Y such that every nonempty set 
X Y⊆  has an R-minimal element, that is, ( )a X b Y bRa∃ ∈ ∀ ∈ ¬ . Equivalently, R is 
wellfounded iff there is no sequence ia i ω<⏐  such that 1( )

ii ai a R+∀ . One can carry 

out proofs and definitions by transfinite induction along a wellfounded relation; for 
example, to define a function f with domain Y, it suffices to define 

( ) from { }f a f b bRa⏐ ⏐ . The existence of a unique f with domain Y satisfying the 
induction clause at all a Y∈  can be proved in ZFC, using the Axiom of Replacement.  
 
A wellorder is a linear order whose associated strict order is wellfounded. Any two 
wellorders 1W  and 2W  can be compared as to length: either 1W  is isomorphic to a 
proper initial segment of 2W , or 1W  is isomorphic to 2W , or 2W  is isomorphic to a 
proper initial segment of 1W , moreover these possibilities are mutually exclusive, and 
the isomorphism is in each case unique. These facts are proved using transfinite 
induction.  
 
A set X is transitive if whenever a b∈  and b X∈ ,then a X∈ ; that is, X is an ∈-initial 
segment of the universe of all sets. If ( , )Y <∗  is a strict wellorder, we define by 
transfinite induction  

( ) { ( ) }a b b aπ π= <∗⏐ . 
 
The range of π is a transitive set which is strictly wellordered by ∈;we call such a set an 
ordinal. We have thus shown that every (strict) wellorder is isomorphic to an ordinal. It 
is easy to show that the ordinal and isomorphism are uniquely determined by the 
wellorder. If α  and β  are ordinals, we write α β<  to mean that α  is isomorphic to a 
proper initial segment of β . It is a pleasant consequence of this choice of 
representatives for isomorphism types of wellorders (which is due to Von Neumann) 
that α β<  iff α β∈ . The relation < wellorders the class of all ordinals, with the least 
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upper bound of a set X being the ordinal X∪ .The least ordinal is 0 = ∅, the order-type 
of the empty wellorder. If α is an ordinal, then 1 { }α α α+ = ∪  is the least ordinal 
strictly greater than α. λ  is a limit ordinal iff 0λ >  and ( 1)α λ α∀ ≠ + . The Axiom of 
Infinity is equivalent to the statement: there is a limit ordinal. The least limit ordinal is 
called ω, and its members are called natural numbers.  
 
2.2. The Wellordering Theorem  
 
The Axiom of Choice implies that wellorders exist in abundance:  
 
Theorem 2.1 (Zermelo 1905). Every set admits a wellorder.  
 
Proof. Let X be given, and let f be a choice function with domain P(X), so that 

( )f Y Y∈  for all nonempty Y X⊆ . We define a function π with domain the ordinals by 
transfinite induction as follows:  
 

( ) ( \{f Xπ α β β α= π( < })⏐ . 
 
That is, we keep listing distinct elements of X, using f to pick the next one. The Axiom 
of Replacement implies that there is an α  such that ran( Xαπ ) =⏐ . But then the image 
under π  of the wellorder ∈  on α  is a wellorder of X.  
 
This combination of definition by transfinite induction and the Axiom of Choice is quite 
powerful. Here is another example. A filter on a set I is a family ( )P I⊆F  closed under 
finite intersections and superset, and not containing 0 .One should think of F as a 
notion of largeness for subsets of I. An ultrafilter on I is a filter F on I such that for all 
X I⊆ , either or \X I X∈ ∈F F . Using Zermelo’s method, we can show every filter 
extends to an ultrafilter. For let Xα α θ<⏐  enumerate ( )P I , and let F  be a given 
filter on I. We define filters αF  for α θ≤  by induction: set 0 =F F ,  

1α+F = some filter G  extending αF  s.t. Xα ∈G  or \I Xα ∈G ,  
and  
 
λ α

α λ<
= ∪F F   

 
for λ  a limit ordinal. It is not hard to show that a filter G  as above must exist, and that 
at limit stages, λF  remains a filter. The desired ultrafilter is then θF .  
 
2.3. The Cumulative Hierarchy; Proper Classes  
 
One further definition by transfinite induction deserves mention, that of the cumulative 
hierarchy. We define  
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Thus Vα  consists of those sets which can be built up in α<  stages by taking sets of 
objects previously formed. Each Vα  is transitive, and V Vα βα β≤ ⇒ ⊆ . It follows 

from the Axiom of Foundation of ZFC that every set is in some Vα .We shall also write 
V for the union of all the Vα , the universe of all sets. V is not itself a set, but rather what 
is sometimes called a proper class. Another useful proper class is OR, the class of all 
ordinals. If, as we have claimed, the language of set theory is universal, then our 
apparent references to proper classes should be eliminable, and indeed they are. Usually, 
this is because we can replace " "x A∈  with ( )xϕ , where ϕ  is a formula of the 
language of set theory defining membership in A. Thus instead of saying that 

ORVα α=∩  (which, incidentally, is true), we could simply say 
( is an ordinal)x x V x xα α∀ ∈ ∧ ⇔ ∈ . Nevertheless, the apparent reference to proper 

classes can be convenient, so we shall make use of it on occasion.  
 
- 
- 
- 
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