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Summary 
 
The purpose of this chapter is to illustrate on elementary and classical examples the 
strong interaction between geometry, calculus of variations and the analysis of partial 
differential equations. We will show in particular that partial differential equations can 
be used to solve problems of geometrical nature, and that some partial differential 
equations, introduced first as models in physics present some truly geometrical features, 
which in turn may lead to unexpected solutions to problems in geometry. 
 
1. Introduction 
 
1.1 Generalities 
 
The strong connection between calculus of variations and geometry goes back 
presumably to the very beginning of these fields. A very natural question: “Is it possible 
to find a two-dimensional domain with least area, for a given prescribed parameter?”(as 
in the isoperimetric problem) offers a good example of such an interplay. With the 
discovery of analytic geometry (that is, the use of coordinates in order to describe 
geometric objects) and the invention of differential calculus, it was soon recognized that 
many of these kind of geometric problems could be formulated very efficiently (even 
though not necessarily in the most elegant terms) as differential equations. It opened the 
way to a systematic treatment of a large number of questions involving first one-
dimensional objects (essentially lines). In the modern period, some important progresses 
made in the understanding of partial differential equations (PDE’s) allow us also to 
successfully consider higher dimensional problems. A classical example, which is rather 
simple to formulate, is the minimal surface problem. 
 
In another direction, the growing geometrization of physics, whose natural language is, 
for a large part, differential calculus, tightened the links described above even more 
strongly. Here are some examples, of rather different natures: 
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-Soap films:  Take a thin metal wire, twist it so to obtain a ring-shaped object, and dip it 
into water containing soap. A film of soap will form, whose boundary is exactly the 
ring. The surface formed that way corresponds (at least at first approximation) to a 
minimal surface. 
 
-Curvature driven interfaces:  These problems, in contrast with the previous one 
which was a stationary problem, involve evolution in time. A typical example, which 
also corresponds to some familiar experiment, is the melting of ice in water. If we dip 
an ice cube into water, it will melt, and hence its shape will evolve in time. The 
boundary of the cube evolves according to an equation involving its curvature (actually 
its mean curvature). A similar equation (involving this time the Gaussian curvature) 
appears in models for eroding rocks at the bottom of the ocean. 
 
-The Einstein equations of General Relativity:  These equations describe the 
evolution of our universe considered as a geometric object. The equations governing 
this evolution involve the fact that the space is “curved” (in some abstract sense), a 
notion which is modeled by the precise geometrical concept of “curvature”. In good 
coordinates (the choice of which is extremely subtle) these equations have striking 
analogies with the equation for a vibrating string, or that of sound (or electromagnetic) 
waves, which have been studied extensively since the late eighteenth century. Even very 
basic questions such as the well-posedness of these equations (i.e. does the solution 
exist and is it unique?), or the formation of singularities present tremendous difficulties. 
It is only in the last decades that spectacular progresses have been made, but the theory 
is still far from being complete. 
 
Geometric evolution equations of the above kind (and specially the second example) 
play an important role not only in physics, but arise also in models in economy or 
biology. They turn out to be also an impressive tool in solving fundamental questions of 
purely geometrical (or topological) nature. The best example is presumably the recent 
solution to the Poincaré conjecture by G. Perelman, using the so-called “Ricci flow”, 
another curvature evolution equation. It is also worth mentioning that related ideas have 
been used in a completely different direction for image processing: geometric evolution 
equations are used there to deform or select those curves, which carry the most 
significant or relevant information in a given image. 
 
In the previous description, we have emphasized the role of partial differential equations 
as a tool in some geometric problems. At a later stage of the discussion, we will also 
show that for some important PDE’s, properties of solutions have to be described by 
geometrical means, and that, sometimes, they even shed new light on the geometric 
concepts they are related to. 
 
1.2 Parameterization of Geometrical Problems 
 
The first important step in order to provide an analytical treatment of a geometrical 
problem consists in its parameterization. One has to describe the geometric object with 
suitable coordinates (in some topics, the term “gauge” is more appropriate), such that 
the unknowns are now “functions” (of real variables), and such that the problem for 
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these functions can be handled using the tools provided by the existing theory for PDE’s 
(or tools that could be developed for that purpose). 
 
In general there is no unique way to construct a parameterization. Moreover, a 
parameterization may introduce some new difficulties, which are not genuinely related 
to the original question: we will see in particular on our examples, that parameterization 
might introduce some new invariance by a large group, which is not present in the 
original problem! From the analytical point of view, this might represent a serious 
source of trouble, related to so-called non-compactness. 
 
Another important point we wish to stress is that, as far as possible, a parameterization 
should preserve some remarkable features of the problem. An illustration of this 
assertion is provided by the maximum principle. It can be formulated for instance for 
minimal surfaces (see below) as follows: if two minimal surfaces are such that (in some 
suitable sense) their boundaries lie one over the other, then the same property holds in 
the interior, i.e. one surface should be above the other. A good parameterization should 
preserve a similar property for the functions aimed at describing these surfaces, and we 
will see that this is indeed the case for graphs, and offers moreover an efficient method 
to solve the problem. 
 
Remark 1.  We would like to mention, however that, in order to solve some geometrical 
problems, approaches avoiding parameterization by functions have also been 
developed. Most of them proceed from the so called “Geometric Measure Theory”. In 
some sense, this theory provides a framework similar to functional analysis, but for 
objects which are meant to be “lines”, “surfaces”, geometrical objects in general, in 
some rather crude sense. As in classical functional analysis, these spaces are designed 
to have nice properties (local compactness, for instance), so that many arguments from 
functional analysis can be transferred. 
 
We illustrate next the concepts introduced so far with a classical example, which played 
an important historical role in the development of the field. 
 
2. An Example: Minimal Surfaces 
 
We consider in this section the classical plateau problem for minimal surfaces, which 
corresponds to our first example, the soap film. In mathematical terms, it can be stated 
as the following problem. Let γ  be a smooth closed curve in , with no self-
intersection: 

3\

 
(Q)  Is there a surface M minimizing the area among all surfaces with boundary γ ? 
 
This simple question has led to a great variety of approaches. We start with the one 
which is presumably conceptually the simplest. 
 
2.1 Graphs 
 
Assume that in some appropriate coordinates the curve γ  can be represented as a graph, 
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i.e. that there exists a two-dimensional simply connected domain Ω  in  such that 
 is a smooth closed curve, and such that there exists a parameterization 

2\
Σ ≡ ∂Ω

: γΣ →�g  of γ  of the form ( ) ( , ( ))σ σ σ=�g ɡ , where ɡ  is a smooth real-valued function 
on . In this context, it is natural to look for a solution to (Q) having itself the form of a 
graph over , i.e. of the form 

Σ
Ω ( ) ( , ( ))f x x f x=� , for 1 2( , )x x x= ∈Ω , where f is a real-

valued function on Ω . In this case, the correspondence between the unknown function f, 
and the surface represented by f (i.e. its graph), is one to one, an optimal situation, 
which is unfortunately not always met, as we will see in the next subsection. The area of 
the surface parameterized by f�  is given by the formula 
 

2
1 2 1 2( ) 1 ( , ) .A f f x x dx dx

Ω
= + ∇∫  

 
A minimizer f for A is a critical point of A, that is, the first variation of A at f vanishes. 
This means that for every function ψ  with compact support in Ω , we have 
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Since the choice of test function ψ  is arbitrary, we obtain the nonlinear partial 
differential equation, also called the Euler-Lagrange equation for the functional A 
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Notice that Eq. (1) expresses the fact that the mean curvature of the graph is exactly 
zero (the left hand side being precisely the expression of half the mean curvature of a 
graph). Therefore (1) is presumably one of the first and simplest “curvature equations”. 
 
In order to find solutions to the previous problem, it is tempting to attack the 
minimization problem directly: it offers some nice specificities, in particular the 
functional A is strictly convex, so that if a minimizer exists, it should be unique, and 
also be the unique solution to the Euler-Lagrange equation associated to the problem. 
However, in order to find such a minimizer one has to enlarge the quest for a suitable 
functional space, having the appropriate topological properties, and on which the 
functional is well defined. It turns out that the space adapted to the functional A is the 
space  of generalized functions of bounded variations, that is, functions whose 
derivatives, in the sense of distributions, are bounded measures. In this space, we are 
hence able to find the ‘desired” solutions. However, BV functions may be rather 
discontinuous, for instance they may have a jump across a full curve. Therefore, in order 
to complete the program it remains to establish higher regularity properties for the 

( )BV Ω
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