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Summary  
 
Already in Lagrangian mechanics, momentum and force appear as contangent vectors, 
not as tangent vectors. The Legendre transformation yields an equivalence between 
Euler-Lagrange equations and Hamiltonian systems in the cotangent bundle. The 
solution of a nonlinear first order partial differential equation is described in terms of a 
Lagrange submanifold of the cotangent bundle. In oscillatory integrals, a Lagrange 
submanifold describes the high frequency asymptotics via the phase functions. Fourier 
integral operators describe the propagation of singularities of solutions of linear partial 
differential equations, in terms of Hamiltonian systems on conic Lagrange submanifolds 
of the cotangent bundle. 
 
1. Lagrangian Mechanics 
 
Since Galileo and Newton, the motion of classical mechanical systems has been 
described as a system of second order ordinary differential equations, for the position 
coordinates as a function of time. More precisely, Newton’s law states that mass time 
acceleration is equal to the force exerted on the system. Lagrange observed that under a 
general nonlinear transformation of coordinates, such as those used in the study of the 
perturbed Kepler problem, the acceleration transforms itself in a quite complicated way, 
involving among others quadratic terms in the velocities. He discovered that the 
equations of motion could be put into a variational form, which then automatically 
transforms in a much simpler way under arbitrary coordinate transformation. 
 
In order to describe Lagrange’s theory in more detail, we introduce a function 
( ), ,L t q q  of time variable t ∈ , a position variable nq∈ , and a velocity 
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vector nq∈ . For any smooth curve [ ]: , na bγ → , defined on a given interval [ ],a b  
on the real axis, consider the integral  
 

( ) ( ) ( )( ), , d
b

a
I L t t t tγ γ γ ′= ∫ , (1) 

 
in which ( ) ( )d dt t tγ γ′ =  denotes the velocity of γ a the time t. If we vary γ γ= ε  as a 
function of an auxiliary parameterε , differentiate the integral under the integral sign 
with respect toε , and perform partial integration in the term in which the factor 

( ) ( )2 2t t t tγ γ∂ ∂ ∂ = ∂ ∂ ∂ε εε ε  appears, then we obtain the variational formula 
 

( ) [ ] ( ) ( ) ( ) ( ) ( ) ( )d
b

a

I
L t t t p b b p a aγγ

δ δ δ
∂

= − ⋅ + ⋅ − ⋅
∂ ∫ε

ε
. (2) 

 
Here the dot denotes the standard inner product in n , ( ) ( ) ( ) ( ): , :t t t tγ γ δ γ= = ∂ ∂ε ε ε  
is the variation of γ, the quantities p(t) in the boundary terms are the momenta 
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(these depend on L and γ), and the quantity [ ] ( )L tγ  in the integrand is equal to 
 

[ ] ( ) ( ) ( )( )
( )

, ,d
:

d q t

L t q tp t
L t

t q
γ

γ

γ
=

′∂
= −

∂
. 

 
It follows that γ is a stationary curve for I(γ) with respect to all variations for 
which ( ) ( ) ( ) ( )p b b p a aδ δ⋅ = ⋅ , if and only if γ satisfies the Euler-Lagrange equations 

[ ] ( ) 0L tγ =  for all [ ],t a b∈ . 
 
Because the left hand side of (2) is obviously independent of the choice of the 
coordinate system, for any variation δ of γ, the integrand in the right hand side is 
invariant under coordinate transformation. Because under a change of coordinates the 
vector δ(t) is multiplied by the Jacobian matrix J at the point γ(t) of the coordinate 
transformation, it follows that [ ] ( )L tγ  is multiplied by the inverse of the transposed of 

the matrix J. In other words, where δ(t) transforms contravariantly, the quantity [ ] ( )L tγ  
transforms covariantly. 
 
This allows to generalize the position space to an n-dimensional manifold Q, where δ(t) 
belongs to the tangent space TqQ of Q at ( )q tγ= , and [ ] ( )L tγ  is coordinate invariantly 
defined as a cotangent vector, a linear form on TqQ. The space of all linear forms on an 
n-dimensional vector space E is called the dual space of E and denoted by E*.E* is a 
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vector space of the same dimension n as E, but in view of the aforementioned different 
behaviors under changes of coordinates we will consistently distinguish TqQ from its 
dual (TqQ)*. 
 
Returning to mechanics, Lagrange observed that if L is equal to the kinetic energy T of 
the mechanical system, then a computation in a rectangular inertial frame shows that 
[ ] ( )T tγ =  mass times acceleration. This led Lagrange to replace Newton’s law by the 

equation that [ ] ( )T tγ  is equal to the force f exerted on the system. As a consequence, 
the force f has to be considered as a cotangent vector, a linear form on the tangent 
space ( )T t Qγ , rather than as a tangent vector. 
 
A mechanical system is called conservative if ( ),T T q q=  dose not depend explicitly 
on the time t and if there exists a smooth function V(q), called the potential energy, such 
that ( )df V q= − . Because [ ]dV V− = , it follows that in this case the equations of 

motion are equivalent to the Euler-Lagrange equation[ ] ( ) 0L tγ = , with L T V= − . This 
observation too is due to Lagrange, although he did not introduce a separate notation 
forT V− , maybe because T V−  does not have such a clear physical meaning as the 
total energy H T V= + . 
 
The coordinate invariant formulation of Lagrange turned out to be particularly useful in 
the search for the equations of motion in continuum mechanics, where the position of 
the continuum cannot be described by finitely many coordinates. However, the kinetic 
energy and the potential energy can be given as integrals over the continuum, and the 
integral (1) with L T V= −  is an integral over the four-dimensional space-time. This led 
Green (1855) and Thomson (1863) to the introduction of the equations of motion for the 
continuum as the Euler-Lagrange equations for the space-time integrals of L T V= − . 
Since then Euler-Lagrange equations for integrals over space-time form a basic theme in 
the field theories of modern theoretical physics. 
 
- 
- 
- 
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