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Summary   
 
Some basic theory of sums of random variables with increasing number of terms is 
presented. Different types of convergence are treated.  
 
The laws of large numbers, the law of iterated logarithm, the central limit theorem and 
the classical summation theory are given, mainly for sums of independent random 
variables, and also refinements on these theorems. 
 
 Local limit theorems, asymptotic expansions, large deviations results and limit 
distributions of normalized extremes and order statistics are considered, too. 
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1. Introduction and Preliminaries   

Probability theory is motivated by the idea, that the unknown probability p of an event A 
is approximately equal to nr / , if n trials result in r realisation of the event A, and the 
approximation improves with increasing n. Limit theorems in probability theory and 
statistics are regarded as results giving convergence of sequences of random variables or 
their distribution functions. Since sequences of random variables are sequences of 
functions with random influences, different modes of convergence are involved. The 
law of large numbers and the central limit theorem are the most important limit 
theorems. They are parts of the classical summation theory, investigating the possible 
limit distributions for the distributions of certain sums of random variables. 
 
1.1. Sequences of Events and Their Probabilities   
 
Let  ),,( PAΩ   be a probability space, where Ω  is a set of elements A,ω  is a σ -
algebra of subsets (here called events) of the set Ω , and P  is a probability measure 
defined on A . Let A∈≥Α 1}{ nn  be a sequence of events. (See "Mathematical 
Foundations and Interpretations of Probability"). 
 
Proposition 1.1. Boole’s inequality: For events  A∈≥Α 1}{ nn , 
 

∑∞
= Α≤Α∞

= 1 )()1( k kPkkP ∪  . (1) 

 
Since P  is countable additive, the equal sign in (1) holds for pairwise disjoint events, 
i.e. if =Α∩Α ji ∅   for  ji ≠ . Define the following events belonging to A : 
 

∪ ∩∩ ∪ ∞
=

∞
==ΑΑ=∞

=
∞
= Α=Α 1inflim andi.o.} ,{ 1suplim k kn nAnnnk kn nnn  .

 (2) 
 
The set nn Αsuplim , denoted by }.i.o ,{ nΑ  is the set of events ω  such that nΑ∈ω  
for infinitely many values of n , where i.o. abbreviates ”infinitely often”. The set 

nn Αinflim  is the set of such events ω , that nΑ∈ω  for all but finitely many values of 
n . 
 
Proposition 1.2. For events  A∈≥Α 1}{ nn   the following hold: 
 

)(inflim)inf(lim nPnnnP Α∞→≤Α   and  
 )sup(lim)(suplim nnPnPn Α≤Α∞→ . (3) 
 
The first inequality in (3) is a consequence of Fatou’s lemma for probabilities. 
 
Proposition 1.3. Borel-Cantelli lemma: Suppose  A∈≥Α 1}{ nn . 
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a)  If  ∞<∞
= Α∑ 1 )(n nP ,   then 0i.o.) ,( =ΑnP . 

b)  Let …,2,1 ΑΑ  be independent events such that ∞=∞
= Α∑ 1 )(n nP . Then 

1i.o.) ,( =ΑnP . 
 
Proposition 1.4. Borel zero-one criterion: If the events in the sequence A∈≥Α 1}{ nn  

are independent, then  1or    0i.o.) ,( =ΑnP according as ∞=∞<∞
= Α∑ or    1 )(n nP . 

 
1.2. Inequalities for Sums of Random Variables  
 
Let …,2,1, XXX  be random variables on a common probability space ),,( PAΩ . 
Denote the mathematical expectation, the variance and the d-th order absolute moment 

of X  by XE , XVar  and dXE , respectively, if they exist. The space 

( ) ∞<<Ω= dPdLdL 0,,, A , denotes the set of random variables X  such that 

∞<dXE . The usual metric in the space dL  is given by dYXYXd ||||),( −=  with 
ddXEdXEdX /1)||(or    |||||| =  according as 10 << d  or 1≥d . There is a type of 

very important inequalities which are collected by the Markov-inequality:  
 

)(1))(()||( XgEgXP −≤≥ εε   for any even non-degreasing function 0≥g  and every 
0>ε . (4) 

 

With 2)( xxg =  the Markov inequality implies the Bienaymé-Chebyshev  inequality: 
 

XXEXP Var  2)||( −≤≥− εε      for every 0>ε , (5) 
 
estimating the probability of deviation of a random variable from its expectation by its 
variance. 
 
Consider the partial sum nXXnS ++= "1  from the sequence 1}{ ≥nnX . 
 
Example 1.1. Weak law of large numbers: Let nXXX ,,2,1 "  be independent and 
identically distributed (Two or more random variables are identically distributed, if they 
have the same distribution.) with finite variance ∞<=< 1Var  20 Xσ . Then 

μnnSE = , 2Var σnnS =  and by (5) 
 

122)|1/|( −−≤≥− nEXnnSP εσε  for any 0>ε . (6) 
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Hence, the probability of the event, that the arithmetic mean nnSnX /= differs from 
the expectation of the summands  1XE   by more than ε , tends to zero. 
 
Let 2

1}{ LnnX ∈≥  be a sequence of independent random variables with 0=kXE  and 

∞<= kXk Var  2σ , nk ,,1 …= . An useful tool in probability theory is the Hàjek-Rényi 

inequality: Suppose 110 cncnc ≤≤−≤< " . Then, for all x >0 and every integer 
nm <<0 , 

 

)22
11

22(2)||(max kkcn
mk

m
k kmcxxkSnkmP σσ ∑∑ +=+=

−≤≥≤≤ . (7) 

 
In case 11 === ncc "  one find the Kolmogorov inequality: 
 

∑ =
−≤≥≤≤

n
k kxxkSnkP 1

22)||1(max σ . (8) 

 
Consider the Bernstein condition: There exists a positive constant H such that 
 

 22
2

!|| −≤ mHk
mm

kXE σ for all integers  2≥m   and  nk ...,2,1= , (9) 

 
bounding the growth of the moments of kX . Bernstein’s condition (9) implies 
exponential estimates for the partial sum nS , the Bernstein inequalities:  Put  

22
1

2
nnb σσ ++= " , then 

 

⎪⎩

⎪
⎨
⎧ ≤≤−

≥−
≤≥−≤ ,/20   if    )}24/(2exp{

./2   xif        )}4/(exp{
)}(),({max Hnbxnbx

HnbHx
xnSPxnSP  (10) 

 
 
The Bernstein inequalities are rather powerful, leading to exponentially fast 
convergence rates as shown in the following. If the random variables nXX ,...,1  with 
zero mean are uniformly bounded, i.e. if there is a constant C such that 

1)||( =≤ CkXP  for nk ,...,1= , then Bernstein’s condition (9) is satisfied with H = C. 
In case of identically distributed random variables ,,...,1 nXX  the Bernstein condition 
(9) is a consequence of the Cramér condition: There exists a positive constant a such 
that 
 

∞<}||exp{ XaE , (11) 
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ensuring the existence of the moment generating function }{exp)( XhEhM =  for 
ah ≤|| , which leads to the existence of all order moments of the underlying random 

variable X. 
 
Example 1.2. Large deviation estimate for the arithmetic mean: Consider a  sequence 

1}{ ≥nnX  of independent and identically distributed random variables with 
)01(1)11( =−=== XPpXP . Then the partial sum nXXnS ++= "1  is binomial 

distributed with success probability p, 10 << p . In order to apply Bernstein’s 
inequalities (10) the conditions (9) have to be proved for the random variable )1( pX − , 
which has now zero mean, as well as the random variable 

npnSpnXpX −=−++− )()1( " . Since 1|1| ≤− pX , Bernstein’s condition (9) 

holds with 1=H . Let nnSnX /=  denote the arithmetic mean of the first n random 
variables from the given sequence. Using 1)1(4 ≤− pp , Bernstein inequalities (10) 
with nx ε=   for some )1(0 pp −<< ε  imply an exponential bound for the deviation of 
sample mean nX  from  success probability p: 
 

}2exp{)}(),({max εεε npnXPpnXP −≤≥−−≤− . (12) 
 
Hence, )||( ε≥− pnXP  tends to zero exponentially fast as ∞→n . Inequalities like 
(12) are known as large deviation estimations in the law of large numbers. 
 

Let rLkX ∈ , i.e. ∞<r
kXE ||  for some 2≥r . Define rn

k kXEnrM |1 |, ∑ == , 

then by the Fuk-Nagaev inequality: 
 

}22)2(2{exp,)/21()( −−−−+−+≤≥ nBxrerrxnrMrrxnSP   for  0>x . (13) 
 

Finally, moments r
nSE ||  may be estimated by the rc -inequality  

 

1   if   1or      1   if   1   with   ,|| ≤=≥−=≤ rrcrrnrcnrMrcr
nSE . (14) 

 
For independent sequences the Rosenthal inequalities give upper and lower bounds: 
 

},,{max2)||(},,{max2 r
nBnrMrrr

nSEr
nBnrMr ⋅≤≤−  (15) 

 
with 2≥r  in the first and 1>r  in the second of the inequalities. 
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