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Summary: From descriptive statistics to statistical inference 

Preliminary statistical data analysis is the first attempt to condense data and to describe 
relations between different variables. This is done without probability models, whereas 
the next step is to look for a stochastic model that describes the observed data in order 
to understand a phenomenon and to predict future values. These stochastic models are 
often determined by so-called parameters. The parameters are to be determined 
(estimated) from the observed data. 
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Another problem is to decide whether a certain stochastic model is appropriate for a real 
phenomenon. Decision rules for this are called statistical tests. Also of importance is the 
decision whether the underlying probability distribution of two data series can be 
considered to be identical. These and other related questions concerning decision 
support are the subject of statistical inference. 

Statistical inference is the science of making justifiable conclusions concerning 
stochastic phenomena based on probability models and observations of the involved 
quantities. 

1. Introduction 

Complementary to descriptive statistical methods, the application of probability in the 
description of real phenomena is of increasing importance in the applied sciences, 
because there are no deterministic laws for many important processes. The up to date 
description of non-deterministic quantities is by stochastic quantities X and their 
probability distributions P. See the topic-level contribution Probability and the articles 
in this topic. 

In statistical inference, probability models are used as the basis for the analysis and 
interpretation of data. In order to find the probability distribution of a stochastic quantity 
X, the observed data are considered to form a so-called sample of the stochastic quantity 
X. A sample is a finite sequence 1, , nX X of observations of X that have the same 
probability distribution as X and are statistically independent. 

Statistical inference is the process of making mathematically sound conclusions 
concerning underlying probability models. In contrast to probability theory, which is a 
deductive mathematical theory, statistical inference is an inductive process in order to 
find suitable probability models to describe mathematically the laws behind phenomena 
that are observed with the help of data. 

Besides modeling the real situation as correctly as possible, such models have unknown 
quantities that determine the probability models. These quantities are called parameters. 
In general a—possibly vector valued—parameter is denoted by θ  and the set ob 
possible values for the parameter is denoted by Θ . Since Θ  is a subset of the Euclidian 
space kIR , Θ  is called parameter space. 

Example 1: Let the stochastic quantity X describe the number of point events in a time 
period of fixed length. Then X may be described by a Poisson distribution ( )Poi θ  
which has a one-dimensional parameter 0θ > . Compare the theme-level contribution 
Probability and Statistics. In this example the parameter space Θ  is equal to the infinite 
interval ( )0,∞  of all positive real numbers. An inference problem is to estimate the 
true parameter value using observed numbers of point events in time intervals of the 
fixed considered length. 
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In looking for the underlying probability distribution of a stochastic quantity the concept 
of a stochastic model is helpful. A stochastic model is a family P  of probability 
distributions that are suitable for the stochastic quantity X under consideration. Formally 
this is denoted by ~ ,X P P∈P , 

where ~X P  means the probability distribution of X is P. 

The next question is whether the probability distribution of X belongs to a subset H  of 
the family P  of all possible probability distributions. Such a subset H  of P  is called a 
statistical hypothesis. 

Example 1 (continued): A related statistical hypotheses would be “the parameter of X is 
greater than 5.” This would be denoted by the hypothesis 

: 5θ ≥H , 

and is the set of all Poisson-distributions whose parameter is not less than 5. 

In general statistical hypotheses are assumptions about stochastic quantities. These can 
concern one or more stochastic quantities. In order to decide if a statistical hypothesis is 
acceptable, statistical tests were developed. The concept of a statistical test is explained 
in Section 0 of this article. 

Another question in Example 1 is the following: For a given high probability 1 α− , 
typically 1 0.95 or 0.99α− = , a subset 1C α−  of the set Θ  of all possible parameters 
is required, in which the true parameter is contained with probability 1 α− . This set 

1C α−  is called the confidence region for the true parameter. The number 1 α−  is 
called coverage probability. 

All the procedures concerning the above mentioned problems belong to statistical 
inference. 

In principle there are four categories of statistical inference procedures: 

• point estimations for stochastic models and parameters 
• confidence estimations for parameters of stochastic models 
• statistical tests for statistical hypotheses concerning stochastic models and 

random phenomena, and 
• optimal statistical decisions under uncertainty when loss or utility is involved. 

An essential point of statistical inference is to learn from data at hand, not primarily to 
develop a formal theory. 

Statistical inference procedures depend on the type of data which are given. The types 
of primary interest are: 
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(i) categorical data 
(ii) ordinal data 
(iii) interval data 
(iv) ratio data. 

These different types of data are of increasing specificity. Categorical data have no 
ordering scheme between their possible values. Examples are color, race, gender, and 
nationality. Ordinal data have a natural order in their possible values but no natural 
distance between them. Examples are rankings, quality classes, and examination marks. 
Interval data have the additional property that distances between data points can 
reasonably be defined. The origin is arbitrary. Examples are calendar data, time 
measurements, and temperature measurements. Ratio data are the most structured type. 
They are represented by numbers and there is a well-defined origin. Therefore it is 
reasonable to calculate ratios of two observations, because they do not depend on the 
measurement unit. Examples are length, age of a person, income, and mass. 

For metric data (which are represented by numbers) there is a secondary classification 
into discrete and continuous data. For discrete data the set of possible values is at most 
countable (i.e. they can be identified with a sequence 1 2, ,a a  of numbers) with no 
accumulation point. Usually the set of possible values is a subset of the set of all 
integers. Continuous data can assume all possible real numbers in an interval. This 
interval can be of finite length or infinite. 

Another classification of data types is by dimensionality. Data are termed univariate if 
to every considered unit only one value—for metric data or interval data only one 
number—is taken. Multivariate data are those where different values are observed for 
every unit under consideration. For multivariate data also the dependence structure 
between the different observed data quantities is important. 

Statistical inference can be considered as the route from data to stochastic models using 
decisions based on probability theory. 

2. Parametric and Nonparametric Inference 

Statistical inference can be classified in different ways. One classification is by the 
assumptions concerning the underlying probability models. 

2.1. Parametric Inference 

Where the family P  of possible probability distributions for a stochastic quantity X is 
characterized by a finite number of parameters 1, , kθ θ , these parameters together are 

called the parameter vector or parameter ( )1, , kθ θ θ=  and the family P  is given 
by a so-called parametric family 

{ },Pθ θ= ∈ΘP , (1) 
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where Θ  denotes the set of all possible values for θ , and Θ  is called the parameter 
space. 

If the probability distribution of a stochastic quantity X can be assumed to be from a 
parametric family of probability distributions the corresponding stochastic model 

~ ,X Pθ θ ∈Θ   

is called a parametric stochastic model. 

Inference procedures for such stochastic models can be reduced to inference procedures 
concerning the parameter θ  of the model. In this case the corresponding statistical 
inference problems belong to so-called parametric inference. 

Examples are all inference procedures for normal distributed stochastic quantities. In 
this case the parameter of the model is two-dimensional, i.e. 

( )2,θ μ σ=   

and the stochastic model is denoted by 

( )2 2~ , , , 0,X N IRμ σ μ σ∈ >   

where ( )2,N μ σ  denotes the normal distribution with expectation μ  and variance 

2σ . This distribution has the probability density (compare the theme level contribution 
Probability and Statistics). 

( )
( ) 2

22
2

1 for all 
2

x

x e x IR
μ

σϕ
πσ

−
−

= ∈ . (2) 

Statistical inference is based on observations of the stochastic quantity and tries to find 
the best possible model to describe the stochastic quantity being considered. In case of a 
parametric model, inference procedures center on the parameter θ  of the model. Details 
are given in Sections 0 and 0 of this article. 

The use of parametric stochastic models can be justified if certain conditions are 
fulfilled. Examples are the Poisson process (compare the article Construction of 
Random Functions and Path Properties), and others are sums of a large number of 
independent stochastic quantities where the central limit theorem applies (compare the 
article Limit Theorems of Probability Theory). 
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2.2. Nonparametric Inference 

Where we cannot assume a parametric model for a stochastic quantity, the 
corresponding inference methods belong to so-called nonparametric inference. Details 
of such inference procedures are given in Section 0 of this article. 

2.3. Semiparametric Inference 

Semiparametric inference procedures were developed in the late twentieth century. 
They are stochastic models that contain a finite dimensional parameter and unknown 
distribution functions that do not belong to a parametric family. 

3. Sufficiency and Information 

Sampling from a stochastic quantity X is carried out in order to obtain information about 
the distribution P of X. If a sample 1, , nX X  of X is taken, an important question is: 
Can the sample be condensed without losing information about the distribution P of X ? 

In general this is complicated, but for special situations an answer can be given. There 
are different definitions of sufficiency of a function ( )1, , nX Xs  of the sample 
depending on the underlying paradigm, that is, classical statistics or Bayesian statistics. 
In many important practical cases the results coincide. 

The essential point of sufficiency of a statistic ( )1, , nS X X=s  is that it is 

sufficient to know the value ( )1, , ns x x=s  for further statistical analysis. Such 
sufficient statistics can also be stochastic vectors. 

Example: Let X denote the waiting time in a service system and have the exponential 
distribution Exθ  with probability density 

( ) ( ) ( ) ( )0,| , 0,xf x e I xθθ θ θ−
∞= ⋅ ∈Θ = ∞  (3) 

where ( )AI ⋅  denotes the indicator function of the subset A of IR , i.e. 

( )
1 for
0 for .A

x A
I x

x A
∈⎧

= ⎨ ∉⎩
 (4) 

In order to estimate the unknown parameter θ  from the sample 1, , nX X  of X it can 
be proved that the statistic 

( )1
1

, ,
n

n i
i

S X X X
=

= = ∑s  (5) 
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is sufficient. For details see Section 0 and Section 0. 

3.1. The Likelihood Function 

Let the stochastic quantity X with outcome space M have a discrete probability 
distribution with point probability ( )|p θ⋅  depending on a parameter θ  from the 

parameter space Θ . Having a sample 1, , nX X  of X, i.e. n independent and 
identically like X distributed stochastic quantities, the joint distribution of the stochastic 
vector ( )1, , nX X  is an n-dimensional discrete distribution on the sample space nM , 
and the joint point probabilities are given by 

( ) ( ) ( ) ( )
( )

1 1 2

1

, , | | | |

for all , ,
n n

n
n

q x x p x p x p x

x x M

θ θ θ θ=

∈
 (6) 

After the observations 1 1, , n nX x X x= =  are obtained the quantities 1, , nx x  are 
fixed numbers. Therefore the point probabilities in equation (6) are a function of the 
parameter θ . Therefore in statistical inference the following notation is used: 

( ) ( )1
1

; , , | ,
n

n i
i

x x p xθ θ θ
=

= ∈Θ∏  (7) 

and this function ( )1; , , nx xθ  is called the likelihood function. 

Where a stochastic quantity X has a continuous probability distribution with probability 
density ( )| ,f θ θ⋅ ∈Θ  the joint probability density of a sample ( )1, , nX X  is 
given by 

( ) ( ) ( ) ( )1 1 2, , | | | |n ng x x f x f x f xθ θ θ θ=   

for all ( )1, , n
nx x M∈ . (8) 

This function—considered as a function of the variable θ —is analogously denoted by 

( ) ( )1
1

; , , |
n

n i
i

x x f xθ θ
=

=∏ ,   θ ∈Θ  (9) 

and is called the likelihood function for the continuous stochastic model. 
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The likelihood function is one of the basic functions in statistical inference, both in 
estimation and testing of statistical hypotheses. Moreover it allows us to characterize the 
sufficiency of a statistic in case of parametric stochastic models. 

The following theorem gives a sufficient condition for sufficiency of a statistic. 

Theorem 1: Let the stochastic model ~ ,X Pθ θ ∈Θ  be discrete or continuous. For 

sample 1, , nX X  of X a statistic ( )1, , nS X X=s  is sufficient for θ  if the 
likelihood function can be factorized in the following way: 

( ) ( )( ) ( )
( )

1 1 1

1

; , , , , , , ,

for all and all , ,

n n n

n
n X

x g x x h x x

x x M

θ θ

θ

=

∈Θ ∈

s
 (10) 

where the two functions ( ),g ⋅ ⋅  and ( )h ⋅  are both nonnegative, ( )h ⋅  is free from θ , 

and ( )( )1, , ,ng x x θs  depends on 1, , nx x  only through the observed value 

( )1, , nx xs  of the statistic S. 

4. Classical Statistical Inference 

The basic assumption in classical statistical inference is that there is a true but unknown 
probability distribution for an observable stochastic quantity or stochastic vector. 

Statistical inference in this case has to draw conclusions about the true distributions. 
These conclusions can be estimates for unknown parameters, or tests of hypotheses 
concerning stochastic quantities and their probability distributions. In looking for 
estimates there are two different approaches: point estimators and confidence regions. 

- 
- 
- 
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