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Summary 
 
The foundations of statistics are diverse. First the quantitative description of real data is 
basic for statistical analysis. Second for inference procedures probabilities are 
fundamental. This includes the different kinds of probability definitions. Also the 
different kinds of uncertainties which are present in applications are essential for 
statistical analysis. These are stochastic variation, model uncertainty, parameter 
uncertainty, and data uncertainty which is different from stochastic uncertainty and is 
called imprecision or fuzziness. Last but not the least, utility and loss considerations are 
basic for good decisions. Realistic utility modeling has to take care also of the 
imprecision in utility modeling. Moreover the most elementary probability distributions 
in sampling normal distributions are given. 
 
1. Introduction 
 
There is a main difference between probability and statistics. Probability provides 
mathematical models to describe stochastic (i.e. non-deterministic) phenomena. The 
question how good a stochastic model (also called probability model) describes a real 
phenomenon is connected with observations of the phenomenon. These observations are 
the starting point of statistics.  
 
Contrary to probability theory, which is a deductive mathematical theory, statistics is an 
inductive science and sometimes also an art. Statistical science is trying to describe data 
sets in a lucid way, to find structures and dependencies in data, to make conclusions 
from observed date, to look for stochastic models describing phenomena for which data 
are available in order to provide scientific support for making well founded decisions, 
and to analyze decision processes in order to arrive at good or even optimal decisions. 
 
The first step in statistical work is of descriptive nature: To summarize data in order to 
provide easy-to-grasp information. This can be done in different ways. Most important 
are characteristic values, measures of dispersion, and empirical distributions. For 
multivariate data, i.e. the idealized observations are vectors, descriptive measures of 
dependencies between the different components in the vector-valued observations or 
dependencies on covariates of observed quantities are considered. Details on these 
methods are explained in the article Preliminary Statistical Data Analysis. These 
methods are also called descriptive statistics. 
 
The foundations of descriptive statistics comprise the study of measurement scales, 
questions concerning the precision of data (compare the article Statistical Inference with 
Non-Precise Data), the study of the suitability of different descriptive measures, and 
questions concerning information loss by data compression. 
 
Quite different from descriptive statistics are problems of matching stochastic models to 
real data sets. Problems of this kind belong to statistical inference. In statistical 
inference the fundamental ideas are  stochastic models and populations from which 
observations are taken. Based on these observations (also called data) inference is made 
about the underlying stochastic model. See also the article Statistical Inference). 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PROBABILITY AND STATISTICS – Vol. II - Foundations of Statistics - Reinhard Viertl  
 

©Encyclopedia of Life Support Systems (EOLSS) 

2. Statistical Data 
 
Data in life sciences are of different nature. Ranging from quality of life data to high 
precision measurements there are different types of data. Corresponding to the different 
types of data there are different scales of measurement. For the so-called categorical 
data (also called nominal data) there is no order in the different possible values. 
Examples are color, nationality, and religion. Data with a natural order in their values 
are called ordinal data. Examples are quality classes, marks for examinations, personal 
preferences, and rankings in sports. The next type of more structured data is the so-
called interval data. For such data the values can be ordered and it is reasonable to 
define differences. The origin of these scales can be defined arbitrarily. Examples of 
interval data are time measurements, calendar data, and temperature data. The most 
structured kind of data are the so-called ratio scale data. In addition to the quality of 
interval data there is an absolute origin. Therefore the quotient (ratio) of two values is 
independent from the used measurement unit. Examples are length, weight, duration, 
many physical scales, and income data. 
 
Looking at the  metric data which are represented by numbers or vectors, different 
kinds of such quantities are distinguished. In case a real valued quantity can assume 
only a finite number of different possible values (or an at most countable number of 
possible values which have no accumulation point) the quantity is called discrete. If a 
quantity can assume all values of an interval ( ),a b  of real numbers, the quantity is 
called continuous. There are also mixtures of both kinds, called mixed quantities. 
 
Another classification of observations of metric data is by the dimensionality of the 
singe data values. For example for every person in a region the following characteristics 
can be observed: sex, nationality, age, height, weight. This can be represented by a 5-
tuple ( )1 2 3 4 5, , , ,x x x x x . Such data are called multivariate data. It should be noted that 
the scales of the different components can be different. In case one data point is 
characterized by a vector ( )1, , kx x"  for 2k ≥  the data are called vector data (or k-

dimensional data). Examples are measurements of locations in space ( )3k =  and air 
quality data with k types of measurements of concentrations of substances. In such 
vector data the different components can be from different kind, i.e. one component can 
be discrete and another component continuous. 
 
Another essential aspect of data is their imprecision. In case of metric data this means 
that the result of a measurement procedure of a continuous quantity is never a precise 
real number but more or less non-precise. This is not taken into account in conventional 
statistics. It is important to note that this concerns the imprecision of one single outcome 
and not the random variation or errors. The imprecision cannot be described adequately 
by probability. Since the outcome of one measurement observation is not a precise 
number a generalization of real numbers is necessary. The most up to date description 
of non-precise numbers is by the so-called characterizing functions ( )ξ ⋅ . A 

characterizing function of a non-precise number x∗  is a generalization of the indicator 
function of a number. Whereas an indicator function ( )BI ⋅  of a subset B of \  
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assumes only the values 0 and 1, i.e. 
 

( ) 1 for
for ,

0 forB
x B

I x x
x B

⎧ ⎫∈⎪ ⎪= ∈⎨ ⎬
∉⎪ ⎪⎩ ⎭

\  

 
a characterizing function can take values from the closed interval [ ]0,1 . Moreover a 

characterizing function ( )ξ ⋅  of a non-precise number x∗  has to obey the following 
conditions (a) and (b): 
 

(a) There exists a real number x with ( ) 1xξ =  

(b) For every real number ( ]0,1α ∈  the so-called cutα −  

( ) ( ){ }:C x x xα ξ α∗ = ∈ ≥\  is a closed finite interval 

 
Therefore a characterizing function can always be represented in the following way: 
There are two real valued functions ( )L x  and ( )R x  such that 

( ) ( ) 1for allx L x x aξ = ≤  

( ) ( ) 1for allx R x x bξ = ≥  

( ) [ ]1 11 for ,x x a bξ = ∈  with 1 1a b≤  

with ( )L ⋅  is increasing on ( ]1,a−∞ , ( )R ⋅  is decreasing on [ )1,b ∞  . 
 
Remark: Characterizing functions need not being continuous. Therefore also the 
functions ( )L ⋅  and ( )R ⋅  need not to be continuous. In Figure 1 an example of a 
characterizing function is depicted. 
 

 
 

Figure 1: Characterizing function     
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3. Uncertainty 
 
Observing real phenomena and trying to find a suitable mathematical model to describe 
uncertainty and to understand dependencies and to make predictions is a central topic of 
statistics. In this process one is facing different kinds of uncertainty. The first problem is 
to define a set of basic variables in describing life support systems, so that uncertainties 
can be treated in a rational way. They are basic in the sense that they are the most 
fundamental quantities recognized. Examples are properties of materials, environmental 
loads, quality measurements, and variables describing quality of life. Most quantities 
that enter into statistical calculations are in reality associated with some uncertainty. Are 
the magnitudes of all variables bounded or can they be restricted within specified 
limits? For example limits to resistance are not easily specified. Direct use of limits - if 
they exist - is extremely uneconomical. Limits imposed by quality control and testing 
are seldom completely effective. A statistician must be concerned with the nature of the 
actual variability of physical quantities such as load, life times, material amounts, and 
others. This variability is also called physical uncertainty and can be described in terms 
of probability distributions or stochastic processes. 
 
The physical variability can only be quantified by examining sample data. But since 
sample sizes are limited by practical and economical considerations, some uncertainty 
must remain. This practical limit gives rise to  statistical uncertainty. Data are collected 
for the purpose of building a stochastic model of the physical variability. This involves 
firstly the selection of an appropriate probability distribution type, and then 
determination of numerical values for its parameters. Probability distributions have 
usually between one and four parameters which must be estimated on the basis of 
limited data information with varying data quality. 
 
The parameters of probability distributions are often themselves stochastic quantities 
and the uncertainty about them will depend on the expert knowledge and the amount of 
sample data. This uncertainty, unlike physical uncertainty, arises solely as a result of 
lack of information, and is usually modeled in the Bayesian framework by probability 
distributions for the parameters. These distributions depend on the available information 
and therefore it contains also statistical uncertainty. 
 
Structural analysis of systems is based on mathematical models relating input and 
output quantities. These models are often deterministic, e.g. linear systems. Such 
models, by their simplifications, they will therefore add to the uncertainty. This source 
of uncertainty is termed model uncertainty and occurs also by unknown boundary 
conditions and as a result of the unknown effect of other variables and their interactions 
which are not included in the model. Especially in large systems like life support 
systems, model uncertainty has a large effect on structural implications and should not 
be neglected. 
 
Another important kind of uncertainty is the uncertainty associated with data. Real data 
can have errors or contain outliers, and often important data are missing. But they are 
often also non-precise. This kind of uncertainty is called data uncertainty. Concerning 
non-precise data this uncertainty is called imprecision. It is important to note that this 
uncertainty is not stochastic in nature but implied by the imprecision of measurements, 
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which can be modeled by the so-called non-precise numbers. 
 
The dominating model for uncertainty in statistics is using probability to describe 
uncertainty. But it should be noted that probability is not sufficient to model all kinds of 
uncertainty which appear in real world situations.  
 
4. Probability and Philosophical Foundations 
 
In order to describe random variation, for example the life times of biological units, the 
most up to date model for that are probability distributions and the basic concepts are 
probabilities.  
 
What are probabilities? There are different opinions about that in the scientific 
community. 
 
4.1. Classical Probabilities 
 
Historically the first kind of probability was from gambling when only a finite number 
m of possible outcomes is possible. By symmetry argument these outcomes are assumed 
to be equally probable. Based on the properties of relative frequencies the probability of 
one of all possible outcomes is defined to be 1. Then the probability of a single outcome 
is 1 m . By the additivity property of relative frequencies and their idealizations 
(probabilities) the probability of a subset A of the set of all possible outcomes is given 
by 
 

( ) number of elements in AP A
m

= . (1) 

 
This kind of probability is called classical probability. 
 
4.2. Geometric Probabilities 
 
If the set of possible outcomes is infinite the classical probability definition does not 
work. If the set M of possible outcomes is a subset of a k-dimensional Euclidian space 
and M has finite content ( )I M , then the probability of a subset A of M is defined by 
the ratio of the content of A to the content of M, i.e. 
 

( ) ( )
( )
I A

P A
I M

= . (2) 

 
Remark: For 1k =  the content corresponds to length, for 2k =  to area, and for 3k =  
to volume. 
 
Geometric probabilities were developed in the 18th century to model statistical 
experiments with outcomes corresponding to geometrically measurable quantities. 
Applications of geometric probabilities are in rendezvous problems.  
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4.3. Probabilities as Idealized Relative Frequencies 
 
Conducting an arbitrary statistical experiment many times and forming the sequence of 
relative frequencies ( )nf A  for a fixed event A of outcomes, this sequence 

( ),nf A n IN∈  converges in probability to a fixed number p. This number is called 
probability of A. Compare the law of large numbers in the contribution Probability and 
Statistics and the article Limit Theorems of Probability Theory. A mathematically sound 
theory of this frequentist probability concept is complicated. For that R. v. Mises 
developed his theory of collectives. But this theory was not widely accepted for 
applications.  
 
4.4. Probability Spaces  
 
In 1933 A. N. Kolmogorov defined a mathematical structure to describe probability 
distributions for statistical experiments with arbitrary outcome spaces. Let M denote the 
set of possible outcomes from an experiment, then the system A of subsets of M is 
formed, for which probabilities are of importance. The elements of A are subsets of M, 
called events. Therefore A is a system of events and in order to define the  probability 
distribution, the system A  has to fulfill the following conditions (a) to (c): 
 

(a) M  belongs to A 
(b) For every event A∈A  also its complement cA  belongs to A 
(c) For every countable sequence 1 2, ,A A "  of events from A also the union 

1
n

n
A

∞

=
∪  belongs to A. 

 
Remark: From the above conditions (a) to (c) by the de Morgan's laws it follows that 
the countable intersection of events is also an event. Moreover finite unions and 
intersections of events are also events, i.e. they belong to A. This follows from 
 

1 1
with for all 1.

n

i i n k
i i

A A A k
∞

+
= =

= =∅ ≥∪ ∪
 

 
The following equations for set theoretic operations for subsets of a fixed set are called 
de Morgan's laws: 
 

c
c

i i
i I i I

A A
∈ =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∪ ∩  (3) 

 
And 
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c
c

i i
i I i I

A A
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∩ ∪   (4) 

 
Kolmogorov defined a probability distribution P on A  in the following way: 
 
(P1)  [ ]: 0,1P →A  

(P2)  ( ) 1P M =  

(P3) For every countable sequence ,nA n∈`  of pairwise disjoint events nA  the 

following  must hold: ( )
11

n n
ni

P A P A
∞ ∞

==

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑∪  

 
Remark: Condition (P3) is called countable additivity. From this the finite additivity 
follows immediately. This means for every finite family 1, , nA A"  of pairwise disjoint 
events the following holds: 
 

( )
11

n n

i i
ii

P A A
==

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑∪  (5) 

 
A triplet ( ), ,M PA  with the foregoing properties is called probability space. 
The concept probability space is basic for most of contemporary stochastic modeling.  
 
- 
- 
- 
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