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Summary 
 
Mathematical models of the general ocean and sea circulations are reviewed. Basic 
model equations traditionally called in oceanology the system of primitive equations, 
are considered. They follow from classical equations of the fluid dynamics of a rotating 
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fluid using Boussinesq, hydrostatic, incompressibility, turbulent viscosity, and 
diffusivity approximations. 
 
Boundary and initial conditions are formulated and discussed together with 
parameterization of turbulent processes that occur on scales smaller than can be 
described by model calculations. Statements related to the questions of uniqueness and 
existence of the solutions of ocean and sea dynamics problems (for some simplifications 
of governing equations) are formulated. 
 
Some conceptual alternative and generalized models of the circulations in seas and 
oceans are presented: shallow-water equations, ocean model in the bottom following 
system of coordinates, free-surface model of the sea dynamics, etc. 
 
The problems arising in numerical calculations of sea and ocean dynamics are 
considered such as the choice of a differential formulation of the problem; the 
approximation of the differential problem with respect to spatial coordinates; the 
implicit methods for integrating the model in time using splitting procedures. 
Approaches on the basis of adjoint equations and optimal control methods are discussed 
for the solution of observational data assimilation and initialization problems. 
 
1. Introduction 
 
Life depends on climate. For many years people have been trying to understand how the 
climate system works and how to forecast its behavior and variability. An understanding 
of the climate system has a significant impact on the economic prosperity of the nations 
throughout the world and on ecological conditions of the Earth’s changing environment. 
 
The oceans and seas play an important role in the global climate system. Their surface 
and deep currents redistribute heat, salt, and chemical substances around the world. 
Ocean and marine thermohaline circulations have a complicated vertical and horizontal 
structure which is determined by atmospheric forcing, distribution of continents, sea, ice 
and bottom relief. 
 
The study of the global ocean circulation has attracted considerable attention. The 
thermohaline component of the ocean circulation, its interaction with atmospheric and 
sea ice dynamics plays a key role in climatic change. 
 
Modeling of the ocean general circulation includes a number of aspects of geophysical, 
mathematical and algorithmic nature, each of them being of scientific interest and thus 
deserving individual consideration. Two basic problems of physical and mathematical 
nature can be distinguished. 
 
The first problem is associated with the studies of physical processes which form the 
large-scale marine and oceanic circulation and their variability. A great number of 
theoretical and experimental works are dedicated to this problem. The discovery and 
examination of the mesoscale eddies in the ocean, the key element of general 
circulation, is one of the most important results in this field. 
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The second problem involves the aspects associated with mathematical and numerical 
modeling of the ocean and sea dynamics. It is this problem which we discuss here. 
 
2. Mathematical Modeling of Oceanic and Marine General Circulation 
 
The ocean general circulation (OGC) model is based on the nonlinear equations of 
large-scale fluid dynamics. The model’s equations follow from the Reynolds equations 
that describe baroclinic motion of a rotating fluid with certain approximations which are 
traditional in the oceanology. 
 
The Reynolds equations are understood as equations governing the motion of an ideal 
fluid averaged over the time. This is associated with the fact that the motion in oceanic 
and sea water is virtually always turbulent. Qualitative analysis of this motion with the 
help of “exact” models is impossible since the latter describe the whole spectrum of 
turbulent pulsations, chaotic flows, regular mesoscale structures, and large-scale 
circulations. Therefore, when constructing mathematical models, the approach proposed 
by Reynolds in 1895 is employed. This approach is based on the transition from the 
“exact” equations to the equations that describe the turbulent motion. These equations, 
averaged in a special way, are called the Reynolds equations of turbulent motion. 
 
The construction of these averaged equations is performed as follows. A desired vector-
function ϕ  with the components velocity, pressure, density, etc. is represented as a sum 
of rapidly and slowly varying components ˆ,ϕ′ ϕ  respectively: 
 

1
0

ˆ ˆ, dt= + = ∫
τ

τϕ ϕ′ ϕ ϕ ϕ . 

 
The time axis is divided into regular intervals of the lengthτ , and the original equations 
describing the nonlinear dynamics of an ideal fluid are integrated over each time 
interval. For a new desired vector function, we choose the slowly varying component of 
the old vector-function ϕ̂  which is equal to corresponding average values on each time 
intervalτ . 
 
The integrals of the rapidly changing components or of the pulsations of all quantities 
within the intervals τ  are assumed to be zero. The integrals of their nonlinear 
interactions are expressed through combinations of averaged functions on the basis of 
certain physical hypotheses of turbulent closure. 
 
2.1. Equations of the General Circulation in Oceans and Seas 
 
Equations of the dynamics of the seas and oceans describing an averaged large-scale 
evolution of turbulent thermohaline fields have the form 
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Equations (1)-(7) are written in the left-handed coordinate system , , zx y . The coordinate 
x is directed along the latitude (eastwards), the coordinate y  is directed along the 
longitude (north-wards), and the coordinate z  is directed downwards from the 
unperturbed sea surface. System (1)-(7) is considered on the time interval (0,t] in a 
three-dimensional domain D. The domain D is bounded by the boundary D∂  that 
consists of the unperturbed sea surface z 0= , the lateral (coastal) surface∑ , and the 
bottom relief H( , )x y  with a normal Hn . 
 
Here, , ,u v w are the components of velocity vector; T is potential temperature; S is 
salinity; p is pressure; ρ is density; T, S, ,ν ν ν νu v are the coefficients of vertical turbulent 

viscosity and diffusion; T S, , ,μ μ μ μu v are the coefficients of horizontal turbulent 
viscosity and diffusion; l is the Coriolis parameter; l 2 sin= yΩ . Quantities m  and n  are 
metric functions; in spherical coordinate system, 1/(R cos ), 1/ R= =m y n , where R is 
the radius of Earth; Ω is the angular velocity of the Earth’s rotation; in Cartesian 
coordinate system, 1= =m n ; the terms T SF , F , F , Fu v  describe the processes of 
turbulent viscosity and diffusion. 
 
Boundary conditions for Equations  (1-7) can be formulated as follows. 
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• in the vertical coordinate, when z 0=  
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• in the vertical coordinate, when z H( , )= x y  
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• on the lateral surface∑ , under the assumption that the terms T SF , F , F , Fu v  have the 

form of the Laplace operators, 
 

0, 0= =u v , (12) 
 

T S
T S0, 0= =
n n

∂ ∂
μ μ

∂ ∂
,          (13) 

 
where n  is normal to∑ . 
 
Equations (1)-(7) are supplemented by the initial conditions for t 0=  
 

0 0 0 0, , T T , S S .= = = =u u v v           (14) 
 
The function (T,S,p)ρ  that defines the equation of state for sea water is chosen on the 
basis of empirical relations. In some cases, for example, in shallow seas, the density 
may depend only on temperature and salinity. 
 
The equations are considered in the domain D( , , z)x y  with a fixed boundary. The 
domain D can be multiply connected because of the presence of individual islands and 
continents. 
 
Traditionally, the system of Equations (1)-(7) is called in oceanology the system of 
“primitive” equations of the general circulation. It was obtained from classical equations 
of the fluid dynamics of a rotating fluid using traditional approximations: the 
Boussinesq approximation, hydrostatics, incompressibility, and the linear closure of 
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turbulent exchange with momentum, heat, and salt (see Mathematical Models in Water 
Sciences). 
 
Extension of the problem’s definition: Equations of the circulation of seas and oceans 
(1)-(7) are formulated under the assumption that, at all moments, the fluid is stably 
stratified with respect to density. This physical condition requires corresponding 
mathematical expression, that is, the extension of the problem’s mathematical statement 
(see Mathematical Models in Water Sciences). From a physical standpoint, this is 
parameterization of the subscale process of convective mixing. This process cannot be 
described by the general circulation equations and must be parameterized. 
 
The introduction of a nonlinear dependence for the coefficient of vertical turbulent 
diffusion of heat and salt on the gradient of potential density along the vertical direction 
is one of the possible parameterizations for the convective mixing process. For example, 
one can set 
 

potmax min
T S min

( )
(1 si ( ))

2 z
−

= ≡ + −
∂ρν ν

ν ν ν
∂

gn          (15) 

 
or 
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T S min 1 2exp( [1 tanh( )],

z
= ≡ −

∂ρ
ν ν ν α α

∂
         (16) 

 
where potρ  is potential density, max min 1 2, , ,ν ν α α are positive constants, 

1
max min 1 max min2, ln[ ].>> =ν ν α ν /ν  

 
2.2. Boundary Conditions 
 
The general circulation problem for the seas and oceans is formulated as an initial-
boundary value problem for the system of Equations (1)-(7). When setting the boundary 
conditions, the boundary of the domain D is divided into several parts: the upper 
interface surface the atmosphere – sea, the lower bottom surface, and the lateral coastal 
boundary. In most of the general circulation problems, it is assumed that all parts of the 
boundary are fixed. 
 
It is assumed that the upper boundary coincides with the unperturbed sea surface z 0=  
and that the constraint 0H( , ) H 0≥ >x y  holds for the bottom surface, so that the coastal 
contour is also fixed. In certain cases, the upper boundary is identified as a free 
surface z ( , , t)= ζ x y . In this case, the statement of the problems is more complicated; 
one of such examples of the statement is presented in what follows. 
 
Sometimes the problem with a moving lateral boundary is also considered. However, it 
is not typical of the models of large-scale circulation of the seas and oceans. It can be 
used when examining the meso-scale dynamics of coastal zones with shallow basins. 
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A kinematic boundary condition for the vertical velocity at the upper unperturbed 
boundary z 0 : 0= =w  is well known as the ‘rigid lid’ approximation. Sometimes, a 
milder, linearized condition t

ζ= ∂
∂w  is used instead. In so doing, long external gravity 

waves of tidal type are included into the spectrum of model solution. In the general 
case, one may use the exact kinematic condition with an additional condition for 
pressure: 
 

d
dt
ζ

=w   at  z ( , , t),ζ= x y           (17) 

 
ap p= ,         (18) 

 
where ap  is the atmospheric pressure. 
 
The conditions for temperature and salinity at the upper boundary (9) are written in the 
general form. Their concrete representation is chosen depending on the situation. 
Starting with the Dirichlet conditions, when the asymptotics T S, →γ γ ∞  hold, they 
may change up to the so-called “mixed conditions”, the Newton conditions for 
temperature 
 

T T s(T T )
z
= −

∂Τ
ν

∂
γ  

 
and the Neumann conditions for salinity S( 0)=γ  
 

S S
S Q
z
=

∂
ν

∂
. 

 
It seems that the use of mixed boundary conditions reflects a real situation more 
effectively. The heat flux into the ocean is determined by local conditions at the surface 
and the third kind condition (the Newton condition) holds for it. The salt flux is related 
with the processes of precipitation formation which may occur far from the sea surface. 
It is possible to turn the quantity Sγ  to zero and use the Neumann condition for salinity. 
The salinity in this case, as well as pressure, is determined with the accuracy up to a 
constant, which must be taken into account when solving the problem. 
 
2.3. Initial Conditions 
 
The absence of data on the fields of velocity vector horizontal components 0 0,u v , 
temperature 0T , and salinity 0S  is the main difficulty related to the statement of the 
initial conditions (14). The initial fields must be set at the moment t 0=  at all points of 
the three-dimensional domain D( , , z)x y . When solving practical problems, the 
information about initial fields is extremely sparse for most of the sea and ocean basins. 
The measurement of hydrological fields at the same moment and at all points of the 
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domain D( , , z)x y  is an almost impracticable and very expensive procedure. In this 
connection, important auxiliary problems arise in the dynamics of ocean: the 
construction of dynamically consistent fields and the construction of initial condition 
themselves. 
 
The current fields dynamically correlated with the fields of temperature, salinity, and 
density can be used for describing the average state of a marine or oceanic medium (and 
as the first guess for the initial data). Observational data on temperature and salinity are 
available for many seas and oceans. These data, as a rule, describe their mean climatic 
values: yearly mean, sometimes averaged over a season and monthly mean data. The 
latter make it possible to restore the seasonal cycle. 
 
Historical data arrays related to temperature and salinity represent a combination of 
several types of data. These are: the vertical distributions of temperature and salinity at 
certain points of the horizontal plane; the data on two-dimensional planes, the 
sections ( , z), ( , z)x y ; the measurements of sea level and sea surface temperature 
obtained by satellite, etc. By these data, three-dimensional distributions of temperature 
and salinity are restored with the methods of interpolation and extrapolation. Therefore, 
in most cases, the fields are related to a certain time interval, say month, season, or year. 
 
The observational data on velocity field are more scanty; they are virtually absent for 
many water basins. In this connection, a problem arises to construct the current fields by 
the measurement data on temperature and salinity. 
 
There is the main requirement to the restored (by various methods) fields of 
temperature, salinity, and currents: the so-called initialization shock must be absent in 
the model solutions when using these data in a model as the initial conditions. The 
initialization shock means sharp change of a solution of mathematical model at an initial 
time interval of its integration. The initialization shock is caused by inconsistent initial 
conditions. It is accompanied by large gradients of the solution with respect to time and 
space. The fields of currents, temperature, and salinity that do not induce the 
initialization shock in a model solution can be referred to as dynamically correlated. 
 
The problem of constructing dynamically correlated fields can be solved both by the 
system of equations that is further used for forecasting and by some other system. For 
example, one of the simplified variants can be used, that is a model which 
asymptotically follows from the original one. 
 
- 
- 
- 
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