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Summary 
 
Identification is the procedure to determine for an observed phenomenon a 
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mathematical model in the form of a dynamic system with numerical values of its 
parameters. Examples of phenomena for which identification has been applied include: 
modeling of nitrate concentration in parts of the human body, modeling of glycolys in 
the parasite T. brucei, and modeling of freeway traffic flow. In this paper a five step 
procedure is formulated for identification consisting of: (1) Selection of a subclass of 
dynamic systems. (2) Data collection. (3) Identifiability. (4) Approximation. (5) 
Evaluation. The procedure is illustrated for the classes of dynamic systems: finite-
dimensional linear systems and finite-dimensional Gaussian systems. Identification for 
several other classes of dynamic systems is discussed. Finally research problems of the 
area of identification are mentioned. 
 
1. Introduction 
 
Identification is the research topic of the construction of a dynamic system from an 
observed time series. The system is expected to represent the observations as well as 
possible according to an approximation criterion. In this paper a five step procedure for 
the identification problem is presented and illustrated. The character of this article is 
tutorial; it is an introduction for readers not familiar with the subject. It is not an 
exhaustive survey. 
 
Examples of identification problems are the modeling of nitrate concentrations in parts 
of the human body, of traffic flow on a motorway, of a robot arm in space, etc. 
Mathematical models in the form of dynamic systems are needed for many purposes. 
Examples of such purposes are detection of events (faults in long gas lines), prediction 
(of electric power demand), and control, directly (control of an aircraft) and indirectly 
(setting standards for the uptake of potentially dangerous chemical substances). 
 
Identification as a research topic has been developed in engineering (electrical, 
mechanical, civil), in statistics (where it is known as time series analysis), and in 
econometrics. Each branch of these sciences or technologies has its own models of 
dynamic systems, its analysis tools, and its books and conference series. Future 
problems of identification are likely to come from biology and medicine, from 
economics and management science, and from new areas of engineering. 
 
Below a five step procedure for identification is formulated and illustrated for two 
classes of dynamic systems. The steps of the procedure are: (1) Selection of a subclass 
of dynamic systems. (2) Data collection. (3) Identifiability. (4) Approximation. (5) 
Evaluation. This way the reader can follow the steps to determine a dynamic system 
from a time series. Subsequently the identification problem for other classes of dynamic 
systems is briefly discussed. Not covered is the topic of the combination of 
identification and control. 
 
Research problems which require attention are briefly mentioned. 
 
2. Problem of Identification 
 
The purpose of this section is to formulate and to discuss the problem of system 
identification. 
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Problems of identification arise in many areas of life support systems. Examples of such 
problems and areas with which the authors are partly familiar include: models for 
freeway traffic flow; concentrations of toxic chemical substances in physiological 
entities of the human body; models for the distribution of pollutants in the atmosphere; 
models for underground water flow; models for chemical substances in rivers and 
estuaries; and models for biochemical reaction networks in cells of humans, animals, or 
plants. 
 
The purpose of a mathematical model is usually a combination of the following: 
understanding of the inherent dynamics of the phenomenon; estimation of the full state 
of the dynamic systems which is often not measured directly; prediction of the state or 
of observed variables; control of the state or of related variables, either directly or 
indirectly. 
 
In the next section an approach to the identification problem is sketched which consists 
of the following five steps: (1) Selection of a subclass of dynamic systems. (2) Data 
collection. (3) Parameterization and check for identifiability. (4) Approximation. (5) 
Evaluation. 
 
The basic problem of identification is to make a trade-off between the accuracy of the 
approximation versus the complexity of the class of dynamic systems. By enlarging the 
class of systems, say with a higher state space dimension and with more parameters, one 
can obtain a system which has a smaller distance to the time series according to the 
approximation criterion. But this goes at the cost of a higher complexity. Conversely, 
reducing the class of dynamic systems hence reducing complexity, one obtains a higher 
value of the approximation criterion. Making the trade-off is an iterative process. 
 
Researchers interested in applying identification to a phenomenon may want to 
concentrate on the following aspects. The value of the criterion is minimized best by 
selection of a subclass of dynamic systems which adequately models the phenomenon 
underlying the data. This aspect is best dealt with by modeling using the laws of the 
domain of the phenomenon, for example, based on laws from physics, chemistry, 
biology, engineering, or economics. Such researchers can then request support from 
engineers and/or mathematicians for the Steps 3 and 4 of the above defined 
identification procedure. 
 
3. Identification Procedure 
 
The purpose of this section is to present a general procedure for identification. As 
example the phenomenon of modeling the nitrate flow in the human body will be 
discussed. As special cases two classes of dynamics systems will be used for 
illustration, that of finite-dimensional linear systems and that of finite-dimensional 
Gaussian systems. These two special cases occur most frequently in engineering. In 
Section 4 identification problems are discussed for which other classes of dynamic 
systems are appropriate models. 
 
In several subsubsections that follow the exposition is necessarily mathematically 
technical. In each such subsubsection the reader interested in only the main 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. I - Identification, Estimation, and Resoultion of Mathematical Models - J.M. van den Hof, 
J.H. van Schuppen 
 
 

©Encyclopedia of Life Support Systems(EOLSS) 

development will be advised to read only the main definitions and results. This can be 
done with only a minor loss of understanding. The reader interested in concepts and 
theorems may read the full text of the paper, or only those parts of interest, or return at a 
later time to the technical parts. 
 
The starting point of the identification procedure is the phenomenon to be modeled. 
Examples of phenomena are the behavior of an inverted pendulum in a control 
laboratory, a robot arm, the flow of benzo-a-pyrene in the body of an animal, or the 
gross domestic product of a nation. The model is expected to describe the inherent 
dynamics of the phenomenon. The model is to be based on time series of observations 
taken of the phenomenon. 
 
3.1. Selection of Subclass of Dynamic Systems 
 
The first step of the identification procedure is to select a subclass of dynamic systems 
with which to model the phenomenon. This is the most creative but also the most 
difficult part of the procedure. The dynamic system has to be based on laws of the 
domain of the phenomenon. Thus a combination of laws of physics, chemistry, 
engineering, biology, or economics has to be used. 
 
As an example, a model for freeway traffic at a macroscopic level is formulated in terms 
of the state variables of density (in vehicles per km per lane) and of speed of the flow 
(in km per hour). The dynamics is based on a law of conservation of mass and on an 
impulse-like law formulated in terms of the behavior of drivers. 
 
The modeler thus has to select: (1) the scope of the model; (2) the state variables of the 
model, which may be in a finite-dimensional space or an infinite-dimensional one; (3) 
the dynamics in the form of an ordinary differential equation, a difference equation, or a 
partial differential equation. The differential equation may be linear or nonlinear. 
 
The concept of a dynamic system has been defined by R.E. Kalman in system theory, 
see the bibliography for references. In a dynamic system one distinguishes the state, the 
input signal, and the output signal. There are then axioms on how to go from an initial 
state with an input on a finite time interval to a final state and an output on the same 
time interval. In a stochastic dynamic system the definition differs from that of a 
deterministic dynamic system in that the map to the final state and the output maps to 
the distributions of these variables rather than the variables themselves. 
 
It is important to note that dynamic systems are best represented in state space form. In 
many text books and papers dynamic systems are presented in forms that differ from 
state space form and this makes identification much more difficult, if not practically 
impossible. 
 
Below two often used classes of dynamic systems are described. 
 
Definition 3.1 A time-invariant continuous-time finite-dimensional linear system is 
described by the linear ordinary differential equation, 
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0 0( ) ( ) ( ), ( ) ,x t Ax t Bu t x t x= + =�  (1) 
 

( ) ( ) ( ),y t Cx t Du t= +  (2) 
 

{ :  },u T U a function⊆ → |U  
 
where , , , nn m k X+∈ =] \  is called the state space, mU = \  is called the input space, 

kY = \  is called the output space, 0, , , ,n n n m k n k mA B C D x X× × × ×∈ ∈ ∈ ∈ ∈\ \ \ \  
is called the initial state, T +⊆ \  is called the time-index set, u∈U  is called the input 
signal, x : T → X is called the state trajectory, it is defined as the unique solution of the 
above differential equation, and :y T Y→  is called the output trajectory, and it is 
defined by the above relation. 
 
The corresponding discrete-time system is defined similarly but with representation, 
 

0 0( 1) ( ) ( ), ( ) ,x t Ax t Bu t x t x+ = + =  (3) 
 

( ) ( ) ( ).y t Cx t Du t= +  (4) 
 
Denote by ( , , )LS n m k  the class of finite-dimensional linear systems as specified above 
and the parameters of any system in this class by 0( , , , , ) ( , , )A B C D x LSP n m k∈ . 
 
Often extra modeling is required to formulate a model of the phenomenon in the form of 
a linear system. 
 
The second class of systems is that of stochastic systems. Consider a probability space 
( , , )F PΩ  consisting of a set Ω, a σ-algebra F, and a probability measure P. A random 

variable 0 : nx Ω→\  is said to be a Gaussian random variable if it has a Gaussian 
probability distribution. Denote by 0 0 0( , )x G m Q∈  that 0x  has a Gaussian probability 

distribution function with mean value 0
nm ∈\  and variance 0

n nQ ×∈\ . 
 
A stochastic process : nx TΩ× →\  is a function such that for all , (., ) : nt T x t∈ Ω→ \  
is a random variable. A Gaussian stochastic process or a Gaussian process is a 
stochastic process : nx TΩ× →\  such that for all k Z+∈ and 1, , kt t T∈…  the random 
variables 

1
, ,

kt tx x…  have a joint probability distribution function which is Gaussian. A 

stationary stochastic process is a stochastic process on either T = \  or T = ]  such that 
for any 1, , , kk Z t t T+∈ ∈… , and s ∈ T, the probability distribution functions of the 
tuples 

1
( , , )

kt tx x…  and 
1

( , , )
kt s t sx x+ +…  are equal. A discrete-time Gaussian white noise 

process is a stationary Gaussian process on T = ]  such that for all k Z+∈  and 

1, , kt t T∈…  the random variables 
1

( , , )
kt tx x… are independent, and for all t ∈ T, tx  has 
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a Gaussian probability distribution function, denoted by (0, )tx G V∈ , with 

, 0n n TV V V×∈ = ≥\ . 
 
Definition 3.2   A discrete-time time-invariant finite-dimensional Gaussian system (for 
short, a Gaussian system) is a stochastic system described by the recursion and the 
equation, 
 

0 0( 1) ( ) ( ) ( ), ( ) ,x t Ax t Bu t M t x t xυ+ = + + =  (5) 
 

( ) ( ) ( ) ( ),y t Cx t Du t N tυ= + +  (6) 
 
where, in addition to the previous definition, the initial state 0 :x XΩ→  is a random 
variable with a Gaussian probability distribution function and the stochastic process 

: rTυ Ω× → \  is Gaussian white noise process. The initial state and the Gaussian 
white noise process are assumed to be independent. Moreover, the state process 

:x T XΩ× →  is defined by the above recursion and the output process :y T YΩ× →  
is defined by the above relation. Notation: ( , , , , , , ) ( , , , )A B C D M N V FDGSP n m r k∈ . 
 
Continuous-time Gaussian stochastic systems will not be described in this paper 
because they require the introduction of stochastic integrals and stochastic differential 
equations and thus more advanced mathematics than used in this article. 
 
Example 3.3 Nitrate model. The model concerns the uptake and dispersion of nitrate in 
the human body. It has been developed at the Rijksinstituut voor Volksgezondheid en 
Milieuhygiëne (National Institute for Public Health and Environmental Hygiene) in 
Bilthoven, The Netherlands. The purpose of the model is to help setting standards for a 
new toxidity standard for the exposure to nitrate.  
 
The model is a compartmental system. A compartmental system is a biological model 
consisting of a finite number of subsystems, which are called compartments. Each 
compartment is assumed to be kinetically homogeneous, any material entering the 
compartment is assumed to be instantly mixed with the material already in the 
compartment. The compartments interact via transportation and diffusion processes. The 
dynamics is based on the mass conservation law and, up to first order, the dynamics is 
described by a linear differential equation. 
 
Four compartments of the body have been selected for inclusion in the model: nitrate 

3( )NO−  in the stomach, in the body pool, and in the saliva, and nitrite 2( )NO−  in the 
saliva. The dynamics can be described by the following differential equations, 
 

1 1 3 1( ) ( ) ( ) ( ),a
s

bx t K x t x t u t
V

= − + +�  (7) 

 
2 1 2 2( ) ( ) ( ) ( ) ,a Tx t K x t K K x t K= − + +�  (8) 

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. I - Identification, Estimation, and Resoultion of Mathematical Models - J.M. van den Hof, 
J.H. van Schuppen 
 
 

©Encyclopedia of Life Support Systems(EOLSS) 

3 2 2 1 3( ) ( ) ( ) ( ),
s

bx t K x t K x t
V

= − +�  (9) 

 

4 1 3 4( ) ( ) ( ).
s

bx t K x t x t
V

= −�  (10) 

 
in which 1 2 3 4, , ,x x x x  denote the amounts of nitrate or nitrite in the compartments listed 
above, respectively. The input 1u  denotes the uptake of nitrate via food. The nitrate is 

converted to nitrite in the saliva. The concentrations of 3NO−  in the body pool and in the 

saliva, and the concentrations of 2NO−  in the saliva can all be observed.  
 
The dynamic system is then transformed into a structured linear system of the form, 
 

0 0( ) ( ) ( ) ( ) ( ), ( ) ( ),x t A p x t B p u t x t x p= + =�  (11) 
 

( ) ( ) ( ) ( ) ( ),y t C p x t D p u t= +  (12) 
 

1 2 3 4 2 1 0,1 0,2 0,3 0,4( ) , ( , , , ,1 , , , , ) ,TT
a s sx x x x x p K K K b V V x x x x= =  (13) 

 
the values of the constants ,T dK V , are assumed known, 
 

1 4

1 2

2 3 4

3 4

0 0 1 0
0 0 0 1

( ) , ( ) ,
0 0 0 0
0 0 0 0

T

p p
p p K

A p B p
p p p

p p

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

 (14) 

 
6

7
5 0

8
5

9

0 1 0 0
( ) 0 0 0 , ( ) ,

0 0 0

d
p

V
p

C p p x p
p

p
p

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠

 (15) 

 
9{ },P p += ∈\  (16) 

 
0( ) ( ( ), ( ), ( ),0, ( )) (4,2,3),  is a polynomial map.f p A p B p C p x p LSP= ∈  (17) 

 
The parameters in the differential equations are constants and their names are omitted. 
The model is a positive linear system since the state variables take values in the positive 
real numbers, +\ , and the input signal is positive also. 
 
3.2. Data Collection 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. I - Identification, Estimation, and Resoultion of Mathematical Models - J.M. van den Hof, 
J.H. van Schuppen 
 
 

©Encyclopedia of Life Support Systems(EOLSS) 

The second step of the identification procedure is to collect data in the form of time 
series. 
 
One distinguishes the case in which the phenomenon can be excited by an input signal 
and that in which no input signal is possible or allowed. A robot arm with an input 
voltage to a motor is an example of a phenomenon with input signal. The rainfall in a 
region and solar activity are examples of phenomena which are not subject to input 
signals which can be influenced by humans. A national economy with as input variables 
the taxation rate and central bank rate is a phenomenon where input signals are possible 
yet almost never consciously used for obtaining observations for mathematical models. 
For biological and economic phenomena the time series are often short and the costs to 
collect the data are high. Experiments with human beings or animals are other examples. 
For many engineering models the time series can be as long as one can handle. 
 
In case the modeler can supply an input signal to the dynamic system for data 
generation there is a problem: What input signal to choose? The simplest approach is to 
provide a small nonzero input signal at a particular time and to record the response of 
the output signal of the system. An input sequence generated by a pseudo-random 
number generator is often used as input signal. But the modeler often wants more; the 
input signal should be the best possible for the task. There is a circularity at this point. 
To determine an input signal which excites the phenomenon such that the dynamics can 
be well identified, one needs to use a realistic model of the phenomenon. But to get a 
realistic dynamic system one has to choose an input signal. In practice one applies a 
procedure with iterations. A simple random input signal is applied to the system. A first 
estimate of the dynamic system is made. Based on the first estimate of the dynamic 
system one then selects a more appropriate input signal, which excites the system in the 
frequency range or in the modes of interest. Then a second and more refined model is 
computed. Experiences with this are quite positive. 
 
The observed time series has to be preprocessed. Thus computation of averages and 
variances is useful. Detection of malfunctioning of measurement devices is necessary. 
Time series with outliers need treatment. An outlier is a data point far outside the 
expected range of observed data. The cause of this outlier has to be determined and if it 
is due to a malfunctioning device then the time series is discarded or the data point 
replaced by a smoothed data point. 
 
- 
- 
- 
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