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Summary 
 
Approximate methods of solution of Cauchy problem for systems of ordinary 
differential equations, including delay differential equations, are described. Principal 
methods of local and global error estimation as well as the inequalities for accuracy 
control of computations and stability control of numerical schemes are considered. 
Realization of variable step algorithms and algorithms for non-uniform schemes 
(explicit and L-stable) with automatic selection of numerical scheme by inequality for 
stability control is briefly discussed. Examples of particular numerical methods are 
given. 
 
1. Introduction 
 
Early analysis of ordinary differential Eqs. (ODE) can be traced towards the end of the 
17th century in connection with the study of problems of mechanics and certain 
geometric problems. The unknown in these equations is a function of one independent 
variable, and the equations include not only the unknown function but its derivatives of 
diverse orders as well. 
 
ODEs are widely used in mechanics, astronomy, physics, biology, chemistry etc. It is 
explained by the fact that such equations often quantitatively are based on physical 
laws, which describe some phenomena. Schematic design of electronic schemes, 
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modeling of kinetics of chemical reactions and computation of dynamics of mechanical 
systems is a far from complete list of the problems described by ODE. A large class of 
problems arises from the approximation of time-dependent problems by finite elements 
or finite differences. In turn, applied problems serve as a source for new problem 
statement in the theory of differential equations. For instance, in this way the optimal 
control mathematical theory had been developed. 
 
Elementary ODEs occur when finding for the integral of a given continuous function 

)(tf , since this is a problem of finding unknown function )(ty , which satisfies the 
equation )(tfy =′ . For proof of solvability of this equation the Riemann integral 
theory had been developed. A natural generalization of this equation is a system of 
ODEs of the first order solved for derivative 
 

),( ytfy =′ , (1a) 
 
where NN RRRf →×:  is known continuous vector-function, and NR  is N -
dimensional linear real space. 
 
The relation (1a) is an abridged form of writing the system of equations 

Niyytfy Nii ≤≤=′ 1),,,,( 1 … . The solution of (1a) on an interval ],[ ba  is a function 
NRba →],[:ϕ , which turns (1a) into identity on ],[)),(,()(:],[ batttftba ∈≡′ ϕϕ . In 

general situation Eq. (1a) has infinite set of solutions ( N -parametric family of 
solutions). To choose one of them, a supplementary condition is required, for example, 
requirement for the solution to take on a given value 0y  at the given point 0t : 
 

00 )( yty = . (1b) 
 
The problem of finding the solution of system of ODEs (1a), which satisfies the initial 
condition (1b), is called Cauchy problem or initial-value problem. In what follows, as 
problem (1) the problem (1a), (1b) is understood. 
 
In order that the problem (1) would have unique solution, it is necessary to impose 
supplementary requirements on the function f . It is said that function ),( ytf  satisfies 
Lipshitz condition in the second argument, if there exists such constant L  that for all 

Rt ∈  and NRyx ∈,  the inequality ||||||),(),(|| yxLytfxtf −≤−  is valid, where |||| ⋅  
is certain norm in NR . The number L  is called Lipshitz constant. 
 
If function f  is continuous in the first argument and satisfies Lipshitz condition in the 
second, then problem (1) has unique solution on any interval of the form 00 ],,[ tttt kk ≥ . 
A simple sufficient condition for Lipshitz condition is the following one. If function f  
is differentiable in the second argument and its derivative is uniformly bounded by 
some constant LyytfL ≤∂∂ ||/),(||:  for all NRRyt ×∈),( , then the function satisfies 
Lipshitz condition with constant L . 
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2. Dynamic Systems 
 
Initially, as dynamic system a mechanical system with finite number of degrees of 
freedom was understood. State of such system is characterized by its disposition 
(configuration), and law of motion determines the rate of change of the state of the 
system. In the simplest case the state is characterized by values Nyy ,,1 " , which can 
take on arbitrary real values. Two different collections Nyy ,,1 "  and Nyy ~,,~

1 "  
correspond to different states, and proximity of iy  and Niyi ≤≤1,~  means closeness of 
corresponding states of the system. In this case the law of motion is written down in the 
form of autonomous ODE system. Considering the values Nyy ,,1 "  as coordinates of 
point y  in N -dimensional space, one can geometrically represent the states of dynamic 
system by means of this point. Such space is called phase space or state space, and the 
change of state in time is called phase trajectory or state trajectory. Later on, the notion 
of dynamic system got wider interpretation and meant arbitrary physical system 
describable by autonomous system of ODE. Dynamic system is talked about when 
qualitative behavior of all trajectories is considered in the whole phase space (global 
theory) or in some its part (local theory). In the theory of dynamic systems a special 
attention is paid to behavior of phase trajectories under infinitely increase of time. From 
particular trajectories usually those are of interest, whose properties can influence 
greatly the qualitative pattern, even if local one. Since non-autonomous system can be 
reduced to autonomous by introducing supplementary variable, these two problems are 
not discriminated below, if the difference is not of principal case. 
 
3. Analytical methods 
 
A large part of theory of ODE is devoted to the study of solutions, which are not known 
exactly. This is so-called qualitative theory of differential equations. It includes stability 
theory, which enables us to indicate stability properties of the solutions from properties 
of the equation without knowing the solution. For example, in the control theory there 
exists a need to ascertain stability of solution with regard to small perturbation of initial 
values in the whole infinite interval 0tt ≥ . Solution, which varies little in infinite 
interval ],[ 0 ∞t  under small perturbation of initial values, is called stable according to 
Liapunov. However, in many particular problems it is often necessary to find solution at 
every point. Initially the efforts were concentrated on integration of equations by 
quadrature methods, i.e. on obtaining formulae expressing (explicitly, implicitly or in 
parametric form) the dependence of solution on t  via elementary functions or integrals 
of the latter. But in the middle of 19th century the first examples of ODE non-integrable 
by quadrature methods had been indicated. It turned out that solution in form of 
formulae can be found for small number of classes of equations (Bernoulli equation, 
differential equation in total differentials, linear differential equation with constant 
coefficients). Even the simplest non-linear equation of the first order 22 tyy +=′  
cannot be solved by quadrature methods. Therefore methods were required for 
computation of approximate solutions of differential equations. 
 
Historically, the first method of solution of ODEs used by its author Newton was the 
method of series expansion. The desired solution is expanded into a series (for instance, 
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Taylor series) with unknown coefficients. This series is substituted in (1a), and from the 
obtained equation the coefficients are determined. If function f  is analytic, that is, can 
be expanded into power series in t  and y : 

"++++++= 2
0211

2
20100100),( yftyftftfyffytf , then solution )(ty  of problem (1) 

is analytic as well and can be represented in the form "+++= 2
210)( tytyyty  with 

unknown coefficients ",,, 210 yyy . After substitution of the obtained expressions in (1) 
and equalization of coefficients at equal powers of t  an infinite system of equations 

…"" ,22, 1002011101102
2
002001001 ++++=+++= yyfyfyffyyfyffy  is obtained. 

From the first equation 1y  is found, from the second – 2y  and so on. These methods 
require a large amount of tedious work. For finding coefficients of Taylor series it is 
necessary to compute derivatives of high orders of the function ),( ytf . 
 
To find approximate solution, the method of successive approximations can be used. 
Problem (1) is equivalent to integral equation 
 

],[,))(,()( 00

0

k

t

t

tttdssysfyty ∈+= ∫ . (2) 

 
Applying to the obtained equation the method of simple iteration, starting, for instance, 
from function 0

)0( )( yty = , one obtains recurrently determined sequence of functions 
 

",2,1,))(,()(
0

)1(
0

)( =+= ∫ − ndssysfyty
t

t

nn .  (3) 

 
The sequence of functions )(ty n  uniformly converges to the solution of Eq. (1), 
estimation of the rate of convergence being known. Since this method requires large 
amount of computational work, it plays mainly theoretical role – for example, it is 
useful when proving Cauchy-Picard theorem or when proving statements on 
differentiability of solutions with respect to parameter or initial data. 
 
In applications, asymptotic methods of approximate solution of ODE are often used. 
Instead of (1) a simpler integrable problem is solved by quadrature methods, whose 
solutions approximate solutions of the original one.  
 
Asymptotic methods are based on distinguishing in the equation principal terms and the 
terms relatively small.  
 
As an example the method of small parameter for equation );,( μytfy =′  can be 
adduced. Asymptotic methods are used both for obtaining analytic expressions which 
approximate solution and for study of qualitative behavior of the solution. 
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