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Summary 
 
Optimizing a linear function over a discrete set is the topic of Discrete Optimization. 
Standard modeling techniques leading to discrete problems are presented, along with 
solution methods. These are based on relaxation and the design and analysis of heuristics. 
Linear Programming plays a fundamental role as relaxation. The Greedy algorithm, 
together with randomized improvement methods, are the key tools for heuristics. 
 
1. Introduction 
 
A policy maker selecting among many alternatives may use economical criteria to come 
to the ‘best’ decision. Often this process can be modeled by yes-no decisions. Discrete 
optimization is the discipline that connects operations research modeling and 
mathematical optimization methods. In discrete optimization, one tries to devise 
operations research models that are computationally tractable. Thus, the modeling phase 
is biased towards models for which practically acceptable algorithms exist. On the other 
hand, theoretical research focuses on broadening the mathematical machinery to deal 
with more complicated models. 
 
This survey reviews the most relevant modeling techniques in Section 2, and the most 
reliable mathematical solution methods in Section 3. 
 
2. Modeling 
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Budget planning in its simplest form can be modeled as follows. Suppose we have a 
budget B available, which we may use for investment in activities 1, …,  n. The cost of 
activity i is known to be ci, its profit pi. If we denote the set of all activities by N := {1, …, 
n}, we can find an optimal investment strategy by solving the following problem. 
 
 

i N i N
maximize   such that , {0,1} .i i i i ip x c x B x i

∈ ∈

≤ ∈ ∀∑ ∑  (1) 

The decision variable xi takes the value 1 if we invest in activity i. The inequality 
constraint expresses the fact that we cannot invest beyond our budget B. 
 
This type of problem is called an integer linear program, because we optimize a linear 
function, subject to linear constraints, over integer variables. In the optimization literature, 
an integer linear program with only one constraint is called the Knapsack problem. 
 
Many problems in management science and operations research, where the objective is to 
make the most economical decision among a set of given alternatives, can be formulated 
as integer linear programs. We will now describe some of the standard model prototypes. 
A further interesting feature of integer linear programs is that they also allow one to 
model logical conditions. Finally, going beyond linear functions can lead to interesting 
and still manageable prototype models. 
 
2.1 Linear Models 
 
The Assignment Problem is among the simplest, and most studied integer linear programs. 
It can be stated as follows. We are given a set of n jobs J1, …, Jn and m workers W1, …, 
Wm. A profit of pij occurs, if worker Wi carries out job Jj. If we wish to assign (some of) 
the jobs to workers, so that each job is done at most once, and each worker handles at 
most one job, and at the same time (thus, maximizing total profit); we end up with the 
assignment problem: 
 
 maximize  such that 1  and 1 , {0,1}.ij ij ij ij ij

ij i j

p x x j x i x≤ ∀ ≤ ∀ ∈∑ ∑ ∑  (2) 

 
The decision variables xij express whether worker Wi carries out job Jj (xij = 1) or not (xij = 
0). 
 
Sometimes it is more important to consider the amount of time that is spent until the last 
job is finished, assuming all jobs are started at the same time. This variant of the 
assignment problem can be modeled as follows. Instead of looking at the profit, we 
consider tij, the time needed by worker Wi to handle job Jj. If we wish to assign all jobs so 
that they are completed as quickly as possible, we arrive at the Bottleneck Assignment 
Problem: 
 
 minimize max   such that 1  and 1 , {0,1}.ij ij ij ij ijij i i

t x x j x i x= ∀ ≤ ∀ ∈∑ ∑  (3) 

 
This problem is only meaningful if m ≥ n, otherwise there are not enough workers to 
execute the jobs. We also observe that the objective function is only piecewise linear, but 
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the resulting problem can still be solved efficiently. Another useful prototype model is the 
Set-Covering Problem. Suppose there are k villages V = {v1, ...  ,vk} that wish to set up 
fire stations to cover all the villages. To minimize costs, it is decided that a fire station 
located in village vi also can serve (aside from vi itself) nearby villages, which are 
reachable within some short time limit. We denote this set of villages by Si. Let us 
introduce the matrix A = (aij) where 
 

 
1 ,

0 otherwise.
i j

ij

v S
a

∈⎧
= ⎨
⎩

 (4) 

 
The cost of building a fire station in village vi is known to be ci. The problem, 
 
 minimize  such that 1 , {0,1}.i ij j i

i j
c a x i x≥ ∀ ∈∑ ∑  (5) 

 
yields the most economical selection of fire stations, while at the same time ensuring that 
each village is reachable from some nearby station. 
 
Finally, we briefly describe the Cutting Stock Problem. A plumber has an order for 
plumbing a building. He uses pipes of fixed diameter but needs pieces of various lengths. 
Specifically, he needs bi pieces of length li, (i = 1, …, k). As raw material, he has pipes of 
length L, where iL l i≥ ∀ . He is faced with the question of how to cut the raw pieces of 
length L, which are available in a sufficient number, to the required lengths, in order to 
minimize total waste. The mathematical model for this type of problem is less 
straightforward than for the previous prototypes. A cutting pattern indicates how many 
pieces of type i are cut from one raw piece of length L. Suppose that in the cutting pattern 
j, we cut aij pieces of type i. For the cutting pattern j to be feasible, it is clearly necessary 
that 
 
 .ij i

i
a l L≤∑  (6) 

 
After having generated a set of patterns, we introduce an integer variable xj for each 
pattern, which indicates how often pattern j is used. To satisfy the demand, it is necessary 
that 
 
 1, ..., .ij j i

j
a x b i k≥ ∀ =∑  (7) 

 
Minimizing waste amounts to 
 
 minimize  subject to 1, ..., , 0 and integer.i ij j i j

i j
x a x b i k x≥ ∀ = ≥∑ ∑  (8) 

 
This is again an integer linear program, but this time, the decision variables xj are not 
limited to 0 or 1. 
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