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Summary 
 
This paper explains the maximum principle of Pontryagin, its setting and form, its 
consequences and its numerical evaluation. The maximum principle arises as a necessary 
condition of optimality when we want to optimize the performance of a dynamical system 
by the action of control functions, which influence directly the derivatives of the state of 
the system. 
 
1. Introduction 
 
A process, which evolves in time, may appear in many different forms. A mathematical 
description of its evolution, if it is done in continuous time, usually involves differential 
or integral equations. If the state of the process at each time t is characterized by a vector 
x(t) ∈ n\ , then the system of ordinary differential equations 
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 ( ) ( , ( ))x t f t x t=i  (1) 

constitutes the most common mathematical model for a deterministic evolution. Indeed, 
under natural assumptions concerning the right hand side f, the value of x(t) is uniquely 
determined by an initial condition x(t0) = x0 for all times t. In a control system, we may 
influence the evolution by a control function u = u(t) which enters the right hand side, 

 ( ) ( , ( )), ( )).x t f t x t u t=i  (2) 

In choosing the control, we may pursue different goals, like stabilization or optimization 
of certain performance parameters. The problem of optimal control arises if we want to 
choose u such that a prescribed cost functional J is optimized. Any control that achieves 
that goal is called optimal control. 

If we minimize a functional J without any constraints, then the condition 

 DJ=0 (3) 

must hold for the derivative of J at the optimal solution, if such a solution exists. 
Accordingly, (3) is called a necessary condition of optimality. If there are constraints, 
condition (3) has to be replaced by a more general condition involving so-called Lagrange 
multipliers. When we evaluate this condition for the problem of optimal control, we get a 
set of equations and inequalities that are called the maximum principle, usually referred 
to as the maximum principle of Pontryagin. Sometimes, this necessary condition is also 
sufficient for optimality by itself (if the overall optimization is convex), or in combination 
with an additional condition on the second derivative. 

This general approach also works for evolutions described by partial differential 
equations, integral equations or other functional-differential equations like delay 
differential equations. See Optimization and Control of Distributed Processes. It is not 
restricted to evolution problems where the independent variable t has the meaning of time, 
so it can also be applied to partial differential equations of elliptic type which describe e.g. 
equilibrium situations in space. The following exposition is concerned, however, only 
with the case of ordinary differential equations. 

The mathematical roots of the maximum principle lie in the calculus of variations, which 
has been under development for several hundred years. Its basic form has been developed 
as part of the early history of control theory during the period 1945-1960. Later, it has 
been extended to optimal control problems for many kinds of dynamical systems. 

2. The Maximum Principle 

2.8 Problem of Optimal Control 

We consider the following problem of optimal control for a system of ordinary 
differential equations. We want to minimize the cost functional 
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0

( , ) ( , ( ), ( )) ( ( ))
T

fJ x u L t x t u t dt L x T= +∫  (4) 

where the state function x : [0, T ] → n\  solves the differential equation 

 ( ) ( , ( )) , ( )) ,x t f t x t u t=i  (5) 

subject to the initial condition 

 x(0)=x0 . (6) 

The control function u: [0, T ] → m\  has to obey a control constraint 

 u(t) ∈ Uad. (7) 

The functions L, Lf, f, the set Uad ⊂ m\  of admissible values of the control function, the 
final time T and the initial state x0 are given. We want to determine an optimal control u∗ 
and the corresponding state x∗ such that 

 J(x∗, u∗) ≤ J(x, u) (8) 

for all pairs (x, u) of state and control functions which satisfy (5)-(7). 

2.9 Statement of the Maximum Principle 

Let (x∗, u∗) be a solution of the optimal control problem (4)-(7). The maximum principle 
asserts that the maximum condition 

 f(t, x∗(t), u∗(t))T p(t) − L(t, x∗(t), u∗(t)) = max
adv U∈

[f(t, x∗(t), v)T p(t) − L(t, x∗(t), v)] (9) 

holds; here, p : [0, T ] → n\  is the adjoint function, which solves the adjoint equation 

 pi (t) = −∂xf(t, x∗(t), u∗(t))T p(t) + ∂xL(t, x∗(t), u∗(t)) , (10) 

with the boundary condition 

 p(T) = −∂xLf(x∗(T)). (11) 

In addition, for the function 

 h(t) = f(t, x∗(t), u∗(t))T p(t) − L(t, x∗(t), u∗(t)) (12) 

it holds that 
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 h'(t) = ∂t f (t, x∗(t), u∗(t))T p(t) − ∂tL(t, x∗(t), u∗(t)). (13) 

In this manner, the original problem is reduced to a boundary value problem coupled to 
the finite-dimensional optimization problem 

 Maximize pTf(t, x, u) − L(t, x, u) ,  subject to u ∈ Uad , (14) 

where t ∈ \ , x, p ∈ n\  are fixed, and an optimal vector u ∈ m\  has to be found. In 
many cases, problem (14) is very simple and can be solved explicitly. We can substitute 
its solution 

 u = u(t, x, p) (15) 

into the differential equations. We then have to determine the optimal state function x∗= 
x∗(t) and the corresponding adjoint function p = p(t) as the solution of the boundary value 
problem 

 xi = f(t, x, u(t, x, p)) , x(0) = x0, (16) 

 pi = ∂xf(t, x, u(t, x, p))Tp − ∂xL(t, x, u(t, x, p)) ,  p(T) = −∂xLf(x(T )). (17) 

Once we have accomplished that, we get the optimal control 

 u∗(t) = u(t, x∗(t), p(t)) (18) 

by substituting the solution of (16), (17) into (15). 

If the approach outlined above works, we have effectively reduced the optimal control 
problem to the two-point boundary value problem (16), (17). That problem is solved by 
appropriate numerical methods, see below. 

2.10 Other Boundary Conditions 

Often, the state function has to satisfy a boundary condition at t = T , 

 fψ (x(T )) = 0 , (19) 

where : n k
f →\ \ψ is a prescribed function. In that case, the boundary condition (11) 

for the adjoint function changes to 

 p(T) = −∂xLf (x∗(T )) + ∂x fψ (x∗(T ))T α . (20) 

Here α ∈ k\  is an additional unknown vector that makes up for the additional k scalar 
conditions to be satisfied in (19). In the extreme case, which occurs if we want to steer the 
state to a particular value xT ∈ n\ , 
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 x(T) = xT , (21) 

the value of p(T ) is completely unrestricted. A more general situation arises with a 
multi-point boundary condition like 

 ψ (x(0), x(t1), ...,  x(tj), x(T )) = 0 , (22) 

which interconnects the values of the state variable for t = 0, t1, ..., tj, T. The adjoint will 
then in general have jumps at the interior points ti with a structure corresponding to (20). 
For example, if a single condition 

 iψ (x(ti)) = 0 , : n
i →\ \ψ , (23) 

is prescribed, the corresponding jump condition becomes 

 *( ) ( ) ( ( ))i i x i ip t p t x tα+ −− = ∂ ψ  (24) 

with a single degree of freedom α ∈ \ . Another particular case of (23) is the periodicity 
boundary condition 

 x(0) = x(T) , (25) 

which occurs in optimal periodic control. 

In all these cases, however, the maximum principle may have to be modified if 
degeneracy occurs, as outlined in the next section. 

- 
- 
- 
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