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Summary 
 
Dynamic programming is a method that provides an optimal feedback synthesis for a 
control problem by solving a nonlinear partial differential equation, known as the 
Hamilton-Jacobi- Bellman equation. The main features of such a method are here 
described and applied to classical examples coming from calculus of variations and 
linear quadratic optimal control. 
 
1. Introduction 
 
Optimal control problems occupy a very special position in optimization theory. In fact, 
they represent natural examples of infinite dimensional optimization problems, even 
when referred to models with finitely many degrees of freedom.  
 
In control theory one is given a system-usually described by differential equations-that 
can be influenced by an external action. In optimal control problems, such an action is 
to be exercised for minimizing a given cost functional. The cost functionals of interest 
may be of very different nature. In general, they may depend on the state of the system, 
on the control, and possibly on the system history during a given time interval. A 
control is optimal if the resulting evolution of the system minimizes the cost.  
 
Constructing optimal controls and providing methods to compute them is the main goal 
of this theory that finds its motivations in applications. The areas of possible application 
can be very different, such as mechanical systems (see Nonconvex Variational 
Problems), space aircraft navigation (see Optimization and Control of Distributed 
Processes), population dynamics and economical models (see Decision Analysis).  
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Like in all optimization theory, one of the main tools for detecting minimum points−in 
this case, optimal controls−consists of necessary conditions of differential type. These 
conditions, that are usually referred to as the Pontryagin Maximum Principle, have been 
extensively studied and widely applied to all sort of different situations.  
 
For optimal control problems, however, there is also an indirect method to derive 
necessary and sufficient optimality conditions. This method was called dynamic 
programming by its inventor R. Bellman. Developing the right theoretical framework to 
sort out the actual applicability of the dynamic programming method has taken several 
years, but nowadays the use of dynamic programming has become completely rigorous. 
At the same time, light has been spread on its drawbacks. In any case, dynamic 
programming remains a strikingly powerful bridge between two apparently unrelated 
branches of science, namely optimal control and partial differential equations. 
 
2. Optimal Control 
 
The basic object in the control theory of ordinary differential equations is the initial 
value problem 
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where T > 0 is given, (s, x) ∈ [0, T ]× n\ , and where α(·) is a measurable function with 
values in a given closed subset of a Euclidean space, A, that is called the control space. 
One usually refers to T as the time horizon, to (1) as the state equation, and to the 
elements a ∈ A as the controls. To avoid any danger of confusion, the function α(·) 
should be called a control strategy although the term ‘control’ is often used for α(·) as 
well. 
 
Mild conditions on the vector field b : [0, T ] × n\  × A → n\  ensure that, for every 
initial condition (s, x) ∈ [0, T ] × n\  and every control strategy a, the solution of 
problem (1) is uniquely determined. Such a solution is called the trajectory starting at 
(s, x) with control α−hereafter abbreviated to , (·)s xyα −and may be subject to further 
constraints, but here this aspect of the theory will be put in the shade to unburden the 
presentation.  
 
There are two main purposes for controlling system (1). One is to solve a positional 
problem: we want to steer the state from its initial configuration x to a given final target 
by the choice of α(·); the other is to optimize the performance of the system. In optimal 
control, attention is focused on the latter task and so we shall follow this line neglecting 
the positional problem for the time being. Then, we shall consider the following 
problem: for any (s, x) ∈ [0, T] × n\ , minimize the cost functional 
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over all control strategies α(·). Here, f : n\ → \  and L : [0, T] × n\ × A → \ are two 
given functions, the final and the running cost respectively. A control strategy α(·) is 
said to be optimal if the above functional attains a minimum at α.  
 
To account for the variety of problems that fit in the above model and better explain the 
techniques we are going to introduce, looking at a few examples is now in order. 
 
Example 0.1 (Calculus of Variations) 
 
A central role in classical mechanics is played by the minimization of the action integral 
 

 
0
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over all absolutely continuous arcs y : [0, T] → n\  with fixed end-points. This problem 
has given rise to the fascinating theory of calculus of variations.  
 
Let us consider the problem obtained replacing the initial time 0 with a generic time s 
and the terminal constraint on y(·) with a terminal cost, that is 
 

 minimize ( ( )) ( , ( ), ( ))
T

s

f y T L t y t y t dt+ ∫
i  subject to y(s)=x. (4) 

 
This is the so-called simplest problem in calculus of variations. Notice that the above 
functional has the form (1)-(2) for A = n\  and b(t, x, a) = a. 
 
Example 0.2 (The Linear Quadratic Regulator Problem) 
 
A large number of control systems of interest to engineering are of the form 
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with given matrices B(t) and C(t) of dimensions n × n and n × m respectively. This is a 
typical example of a state equation of type (1) with m\  as the control space. The Linear 
Quadratic Regulator (LQR) problem consists in minimizing the quadratic cost 
functional 
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Notice that the above functional is of type (2) for the following choice of coefficients: 
 
 f(x) = x · Dx ,  L(t, x, a) = x · M(t)x + a · N(t)a , (7)  
 
where we have denoted by p · q the scalar product of any two vectors p, q ∈ n\ . 
Typical nondegeneracy assumptions on J require D and M(t) to be nonnegative definite, 
symmetric n × n matrices and N(t) to be a symmetric, positive definite m × m matrix.  
 
Three are the basic theoretical issues in optimal control: 
 
• Prove the existence of optimal controls; 
• Derive necessary conditions that must be satisfied by any optimal control; 
• Provide sufficient conditions for a control-trajectory pair {a, y} to be optimal. 
 
Extensively though each of these issues may have been investigated, there is still plenty 
of room for open questions and research work to be done before the subject can be fully 
understood. As anticipated in the introduction, the dynamic programming method aims 
at providing sufficient optimality conditions, thus addressing the third issue above. 
 
- 
- 
- 
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