
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. IV - Adaptive Dynamic Programming - Gerhard Hubner 

©Encyclopedia of Life Support Systems (EOLSS) 

ADAPTIVE DYNAMIC PROGRAMMING 
 
Gerhard Hübner 
University of Hamburg,  Germany. 
 
Keywords: adaptive, dynamic programming, decision process, average reward, 
discounted, estimation and control, nonstationary value iteration, policy iteration, 
applications 
 
Contents 
 
1. Introduction 
2. Basic Models and Valuations 
2.1 Stationary Adaptive Markov Decision Models 
2.2 Policies and Value Functions 
2.3 The Average Reward Problem 
2.4 The Discounted Problem 
3. Adaptive Algorithms 
3.1 The Principle of Estimation and Control (PEC) 
3.2 Nonstationary Successive Approximation and Policy Iteration 
4. Estimation Procedures 
4.1 Relative Frequencies 
4.2 Minimum Contrast Estimation. 
4.3 Bayesian Models and Methods 
5. Remarks on Applications 
6. Remarks on Related Concepts 
Acknowledgements 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
Adaptive dynamic programming is the problem of finding an optimal (or nearly 
optimal) control policy for a (discrete time) valuated stochastic process whose local 
rewards and transitions depend on unknown parameters. This problem is formalized by 
a family of Markov decision processes using the valuations of long run average and of 
asymptotic discounted total value. (For simplicity we restrict to finite or countable state 
spaces.) To get information on the unknown parameters, these are estimated with 
increasing precision, while the process evolves in time. At each stage, the presently best 
estimates are used to improve controlling actions. 
 
Several solution methods are presented, ranging from completely exploiting the recent 
estimates and needing a great many calculations , e.g. the "principle of estimation and 
control", to those with a slow adaptation to changing estimates and using few 
calculations, e.g. "non-stationary policy/value iterations". 
 
Finally, some frequently used estimation procedures are presented. In addition, we 
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discuss some typical applications and related concepts. 
 
1. Introduction 
 
The essential features of adaptive dynamic programming may be demonstrated by the 
following example from inventory management: 
 
The owner of a little shop selling running shoes states, at the end of each week, the 
numbers of sold shoes and remaining shoes. Then he orders new ones according to his 
knowledge and feeling about future demands. The size of his order may be calculated 
by using models and methods of dynamic programming. 
 
During the following weeks his experience and information about future demands and 
prices may change. Consequently, his decisions regarding the amounts to be ordered 
may change too. This type of behavior, i.e. including latest information into decisions, is 
called adaptive. 
 
The situation of the shop owner described above - without "adaptive" aspects - is an 
example from the class of Markov Decision Processes which are also called Stochastic 
Dynamic Programs when stressing algorithmic aspects. 
 
The additional feature above, called adaptive, is the fact that (some of) the parameters 
influencing the present reward and/or the future development of the process are not 
(exactly) known to the decision maker. Thus, the situation changes according to the 
knowledge of these parameters. 
 
It is the aim of the decision maker to make improved estimates of the unknown 
parameters and to find a policy (prescribing his actions in all possible situations) such 
that his long run expected reward is maximized. 
 
The article is structured as follows: 
 
In section 2, the basic components and notions are presented. At first, we introduce a 
family of stationary Markov decision models, depending on an unknown parameter, 
which represents the missing knowledge. Then we define the notion of (deterministic 
non-Markov) policies and the pertinent stochastic processes. Finally, we discuss two 
standard global value functions to measure the quality of different policies. These are: 
the long run average of the expected rewards per stage, and the sum of discounted 
expected rewards (discounted to the starting time). 
 
In sections 3 and 4, the commonly used algorithms for solving these problems and the 
pertinent estimation methods are presented. Section 5 contains some typical 
applications. Some related problems are discussed in section 6. 
 
2. Basic Models and Valuations 
 
2.5 Stationary Adaptive Markov Decision Models 
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The situation described in the beginning of section 1 will now be formalized as a 
"Macros Decision Model". This model contains all structural and numerical information 
needed to describe the system. It consists of the following components: 
 
1. The evolution of the system will be observed and decided about at a set T of 

discrete time points which are numbered n = 0, 1, 2, ... and may be thought to be 
equidistant. 

2. Let S be the set of possible states of the system, the so-called state space. For 
simplicity we assume that S will be countable (finite or countably infinite). In our 
example, i ∈ S may be the number of shoes in stock. 

3. Let A be the (nonempty) set of all possible actions (or decisions) called action 
space. Here  
a ∈ A may be the number of shoes to be ordered. 

4. Not all actions may be allowed in every state (e.g. if there are restricted resources). 
Therefore we introduce the nonempty subsets A(i) of actions feasible in state i ∈ S. 

5. If i ∈ S is the state of the system (at some point of time) and action a ∈ A(i) is 
chosen, then p(i, a, j) is the probability that the next state will be j ∈ S. The 
mapping p is called the transition law. In case of inventory management p may be 
derived from the random demand. 

6. Assigned to each feasible state-action pair (i, a) there is a reward r(i, a). These 
rewards are later summarized to an over-all value function. The mapping r is called 
the (one-step) reward function, which is assumed to be bounded. 

7. To compare rewards obtained at different time points a discount factor ß with 0 < ß 
≤ 1 is introduced. The most important cases are ß < 1 where ß = (1 + ρ)−1 reflects 
the interest rate ρ, and ß = 1 when long run averages are considered. 

 
So far we have defined a Markov Decision Model which is stationary, i.e. all 
components do not depend on the time points n ∈ T. This model may be summarized as 
(S, A, p, r, ß). 
 
However, this model does not take into account the "adaptive" aspect, i.e. the varying 
knowledge about the probability law p and the reward function r. 
 
For this reason, we introduce a family of stationary Markov decision models depending 
on a parameter θ. The set Θ of all parameters θ reflects the different states of 
information. 
 
Definition 
 
A Stationary Adaptive Markov Decision Model is a family 
 
 ( )( , , , , ),S A p rθ θ β θ ∈Θ     (1) 

 
of stationary Markov decision models as described above where Θ is assumed to be a 
compact subset of a metric space (allowing e.g. Θ to be finite or countably infinite). 
 
(For more details see Markov Decision Processes.) 
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2.6 Policies and Value Functions 
 
The above concept of a Markov Decision Model describes only the local behavior of a 
system. There is no connection between the available information and the actions to be 
chosen. This connection will be established by the concept of a policy, i.e. a prescription 
of actions in advance for all stages and all possible states of information. This 
prescription (e.g. by a decision maker) determines totally the probabilistic behavior of 
the system and is formalized as follows. 
Definition 
 
a. Denote by hn:= (i0, i1, i2, ..., in) (n ≥ 0) any history of the system up to time n. 
b. The functions fn assigning to a history hn an action a ∈ A(in) are called decision 

rules (at time n). These rules are deterministic and non-Markov. 
c. Any sequence π := (f0, f1, f2, ... ) of decision rules is called a policy, more precisely, 

a deterministic non-Markov policy with infinite horizon. Let Π be the set of all such 
policies. 

d. Using a policy π the transition probabilities will be non-stationary and non-Markov, 
since action a at time n is chosen according to the decision rule fn which depends on 
the history hn. Similarly, the one stage rewards depend on hn. Thus we write for hn 
= (i0, i1, ..., in), in+1 ∈ S 

 

1 1( , ) : ( , ( ), ),n n n n n n np h i p i f h iθ θ
π + +=      (2) 

 
( ) : ( , ( )).n n n n nr h r i f hθ θ

π =      (3) 
 

e. If we fix a parameter θ, a state i, and a policy π ∈ Π, then we obtain a stochastic 
process X0, X1, X2, ..., describing the development of the states Xn of the system 
over time. The pertinent probability measure i

θ
πP  on the set of infinite histories h = 

(i0, i1, ... ) is defined (according to the theorem of IONESCU-TULCEA) by  
 

0

0 0 1 1

0 0 1 1 1 2 1, 1

( , , ..., )

( , ) ( , )... ( , ), 1, 2, ...,
i n n

ii n n n

X i X i X i

p i i p h i p h i n

θ
π

θ θ θ
π π πδ − −

= = =

= =

P
    (4) 

          where δij = 1, if i = j, else δij = 0. 
 
We will consider (for fixed θ, some starting state i and some policy π) two different 
valuations of the behavior of the system over time:  
 
In case of ß = 1 we use the long-run average expected reward iGθ

π  (see (5) below), 

whereas in case of ß < 1 we consider the expected discounted total reward ( )V iθ
π  (see 

(16) below), both depending on θ, i and π . 
 
Our problem is to maximize these functions over all policies, if possible. A "solution" of 
this problem consists in either case of two components: the maximal value and a policy 
by which this value is obtained. 
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In the following two sections we show how to find solutions if the parameter θ is 
known. However, we are interested in policies, which are optimal for the true, but 
unknown parameter. 
 
Therefore, while the process is running, the true parameter θ will be sequentially 
estimated based on improving information. These estimates are used to derive policies 
which are optimal (or nearly optimal) for the true θ. This concept will be implemented 
in Section 3. 
 
(For more details on policies and value functions see Markov Decision Processes.) 
 
- 
- 
- 
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