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Summary 
 
Postural equilibrium (or balance) involves actively maintaining the chosen body 
configuration against gravity, and internal or external disturbances. Quiet standing 
implicates incessant postural adjustments, the involuntary movements aimed to counter 
multidimensional disturbances to the standing posture. Standing humans over moving 
support surface have been observed to use ankle and/or hip strategies to regain balance. 
Postural stability constitutes an important attribute of the musculoskeletal-
proprioceptive apparatus. It is enabled by the biological servomechanism called lower-
level motor servo that generates reflexes aimed and relieving muscle tension. 
Quantifiable measures of postural stability include center of mass (COM) or center of 
pressure (COP) relative to base of support (BOS), extended COM position, and feasible 
stability region (FSR) in the COM phase plane. Passive viscoelasticity of the musculo-
tendon complexes (MTCs) is a major contributor to postural stability. Stability 
augmentation entails persistent central nervous system (CNS) involvement via spinal 
reflexes, internal model control, and anticipatory postural adjustments (APA). Active 
control of muscle stiffness and tone relies on proprioceptive feedback to dynamically 
modulate muscle afferents. Yet, how the CNS mitigates the destabilizing effects of neural 
transmission delays and muscle lags remains unclear. Mathematical models have often 
been used to provide insight into neurophysiology. Control of balance in human upright 
standing is particularly well suited for modeling, and is also a popular experimental 
paradigm. Analytical models based on behavioral experiments have shown that human 
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stance control can be explained by continuous sensory feedback, sensorimotor 
integration, and the use of internal models. Inverted pendulum (IP) type models of 
postural control, though simplistic in construction, are popular among researchers. 
Analytical modeling studies employ control theoretic analogues, such as a proportional-
integral-derivative (PID) controller, to represent the decision making modalities in the 
CNS. In this chapter, we aim to provide a broad discussion of the neuro-physiological 
bases of postural equilibrium, stability, and control in the backdrop of neuroscientific 
research and mathematical models. 
 
1. Introduction 
 
Human posture refers to the static disposition of limbs and body parts. Examples of 
static posture include standing (also referred to as stance), sitting, lying down, etc. 
Transition from one static posture to another entails movement, which may be 
categorized as postural, voluntary, skilled, ballistic, phasic, etc. At a broad level, goal-
directed voluntary movements can be distinguished from postural adjustments that are 
initiated in response to internal or external perturbations to the standing posture. While 
postural movements are usually performed in the range of 5-10 Hz, skilled voluntary 
movements can be performed at much higher speeds. Skilled voluntary movements 
exhibit smooth kinematic profiles, i.e., S-shaped angular position profiles, nearly 
constant velocity profiles, and biphasic acceleration profiles that indicate force 
generation in the agonist and antagonist muscles. Static posture is a special case of 
postural equilibrium, which implies a balance of forces and moments acting on the 
body. Maintenance of postural equilibrium requires muscle activations to counter the 
gravitational torques acting on the limbs. For example, the standing posture is achieved 
through the activation of lower extremity muscles to counter the moment generated by 
the vertical ground reaction force acting through the COP. Static equilibrium also 
requires the center of gravity (CG) of the whole body to be positioned over the BOS – 
the area under the two feet. Further, in the context of movement, the dynamic 
equilibrium refers to the balance of forces and moments (including inertial moments) on 
the body when in motion. For nonlinear systems, dynamic equilibrium implies that 
motion is restricted to a closed curve in the phase space. In biomechanical systems, a 
closed phase space orbit may only be achieved for certain phasic movements (e.g. 
walking). The COM in the case of dynamic equilibrium may not be restricted to the 
BOS. For example, COM during walking is located outside of the BOS 80% of the 
time.  
 
The neuro-physiological processes involved in regulation of posture and voluntary 
movement in humans and vertebrates include: the CNS comprising brain and spinal 
cord; the peripheral nervous system (PNS) comprising afferent and efferent pathways; 
the musculoskeletal system comprising skeleton driven by the muscle-tendon actuators; 
and, the sensory system composed of a variety of sensory receptors, including muscle 
spindle (MS), Golgi tendon organ (GTO), joint, subcutaneous, somatosensory, and 
mechanoreceptors. These collectively describe the neuro-musculo-skeletal control 
system (NMSCS), comprising musculoskeletal and proprioceptive elements, that plans, 
organizes, executes, and regulates postural and voluntary movement. The state of the 
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musculoskeletal system may be represented via such variables as muscle length, tone, 
stiffness, rate of shortening, etc. These are monitored by a distributed net of sensory 
receptors, and transmitted via afferent pathways to the CNS, where they are integrated 
and processed with other proprioceptive information and stimuli (tactile, 
somatosensory, visual, and vestibular) to generate descending commands. These 
constitute motor neuron firing rates are transmitted over efferent pathways to the muscle 
actuators where they energize the motor units (MUs), each comprising of a motor 
neuron and the muscle fibers it stimulates. The ensuing contractile action by muscle 
fibers facilitates movement in support of the intended task. Active control of movement 
trajectory is achieved through continuously varying the firing rate commands issued to 
the motor neurons (MNs) of antagonist muscle pairs. Primary movement stability 
during trajectory formation is provided by the spring-like behavior of synergistic 
muscles and the resulting mechanical stiffness of the muscle-joint structures. While 
stiffness is maintained at constant values during static postural synergies, it is 
dynamically varied during skilled voluntary movements. For example, during walking 
stiffness is maximized at a time in the step cycle when the extensors must support the 
weight of the body.  
 
Motor control refers to the modalities of posture and movement that are controlled by 
central commands and spinal reflexes. Motor control of postural and voluntary 
movements is executed as a series of motor programs stored in the CNS long-term 
memory (Figure 1). These programs refer to neuronal networks in the CNS that are 
designed to handle the basic motor repertoire required for survival, including 
locomotion, posture, eye movements, breathing, chewing, swallowing and expression of 
emotions. Motor programs for pre-planned actions specify muscles to be used, muscle 
tones, sequencing of contraction, relative timings, and durations of contractions. These 
commands are transmitted with precise timings via descending pathways to the motor 
units involved as the movement unfolds. The motor programs allow the movements to 
be carried out without explicit, conscious CNS control. Programs for goal-directed 
movements reside in the association cortex. The motor cortex translates these programs 
into mechanical stiffness at the joints (hold program), movement direction, velocity and 
end points (trajectory or move program). The spinal cord implements these programs by 
setting the muscle tone and stiffness, along with the sensitivity of the primary sensory 
organs, the MS and the GTO. The concatenation of simple motor programs into fully 
formed motor plans requires afferent feedback to inform CNS of the success of each 
program unit, enabling it to modify any errors in execution, before proceeding with the 
plan for the next stage. Afferent signals from MS convey length and velocity of the 
contractile element (CE), and afferents from GTO convey information about muscle 
tone. While mechanisms of postural and voluntary movement are similar in nature, we 
will concentrate on the former in the discussion that follows. Although neural 
mechanisms regulating postural control are unknown, evidence suggests that the 
hierarchal controller for postural adjustments resides in supraspinal circuits, possibly in 
the brainstem. 
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Figure 1. The human brain: Cerebrum lobes, Cerebellum, Somatomotor and 
Somatosensory cortices. The motor cortex and cerebellum, in particular, play a lead role 

in the coordination of postural and voluntary movement (from SEER Training 
Modules, Brain. U.S. National Institutes of Health, National Cancer Institute, 

<http://training.seer.cancer.gov/brain/tumors/anatomy/brain.html>, in public domain). 
 
The use of control-oriented mathematical models to provide insight into 
neurophysiology has a long history. Researchers have often used mathematical 
modeling of the physiological apparatus aided by application of analytical methods to 
answer questions about physiological behavior. Control of balance in human upright 
standing is particularly well suited for modeling, and is a popular experimental 
paradigm. Researchers have also discovered that simplified representation of postural 
dynamics and computation of a minimal set of stabilizing feedback gains using system 
identification methods, allows them to make reasonable predictions of natural motor 
behaviors. Biomechanical models of varying complexity have been widely employed in 
the study of posture and movement. Whereas, researchers have extensively studied 
sensorimotor systems for at least a century, mathematical descriptions of these systems 
have emerged only in the past few decades.  
 
Our intent in this chapter is to discuss the neuro-physiological mechanisms of postural 
equilibrium, stability, and control using neuroscientific research and biomechanical 
models as tools to understand the underlying neurophysiology. It would not be possible 
to provide and exhaustive treatment of the subject; the interested reader is referred to the 
many excellent references provided at the end of the chapter. The rest of the chapter is 
organized as follows: mechanisms of postural adjustments and stability are introduced 
in Section 2, which also introduces’principal determinants of postural stability; active 
and passive mechanisms of postural stabilization are explained further in Section 3, 
which includes a discussion on the biological servomechanism known as lower-level 
motor servo; neuroscientific and mathematical models of the postural control, including 
internal models, inverted-pendulum models, and multi-segment models are described in 
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Section 4; controller models for postural movements are discussed in Section 5; finally, 
conclusions are drawn in Section 6. 
 
- 
- 
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