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Summary 
 
The origin of new live beings and the events that occur before birth have been the object 
of fascination and discussion over the centuries. Our concept of two cells, ovum and 
sperm, fusing to generate a zygote, then an embryo and finally a new individual, is 
relatively new; as it is the idea of two sets of chromosomes carrying the genetic 
information inherited from each parent and being coordinated to generate something 
new and different. The recent advances in the cytology field, as well as in biochemistry 
and genetics, have allowed us to trace back the origins and formation of ovum and 
sperm (gametogenesis) and to follow the dramatic modifications that occur in the 
embryo during the first days until it is implanted in the maternal uterus in mammals. 
Moreover, the rapid expansion of new techniques such as in vitro fertilization, 
genetically modified organisms and cloning, and their implications in our society, have 
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invigorated the interest in the processes that surround fertilization.  
 
This article summarizes the major events that occur during and after the fusion of the 
ovum and sperm until the embryo implants. It reviews our current knowledge about the 
origin of the gametes, and how such specialized cells can generate embryonic cells with 
the potential of generating every possible tissue type. It also discusses recent progresses, 
specially the latest contributions from the genetics field, as well as the questions that are 
still open or are object of debate. 
 
1. Introduction 
 
The generation of a new individual as a result of the fusion of a maternal and a paternal 
gamete is a complex and fascinating process. Gametogenesis is the production of 
haploid sex cells in mammals (ovum and sperm), carrying each one-half of the genetic 
complement of the parents. Both female and male gametogenesis provides mechanisms 
through which genetic information may be passed to the offspring. The fusion of sperm 
and ovum during fertilization results in a zygote with a fully restored diploid genome.  
 
Errors during the processes of gametogenesis and fertilization until implantation have a 
major impact in fertility. 15% of couples worldwide are childless due to fertility 
problems. In addition, miscarriages are extremely frequent in normal couples: most of 
them occur so early that are not detected, but of those noticed, approximately one-third 
have an abnormal number of chromosomes. This is mostly due to errors during the 
formation of the eggs: as many as 20% of them, but only 3-4% of sperm are 
chromosomally abnormal in humans. Consequently, both gametogenesis and early 
embryogenesis have been the object of great interest, specially since the advent of the in 
vitro fertilization technologies. 
 
In this major review, we begin presenting how germ cells are initially specified in the 
early embryo and the processes that lead to their differentiation in the gonads. Then we 
will introduce fertilization and activation of the egg -the vital step that leads to the first 
stages of embryogenesis. These stages will be discussed until the implantation of the 
embryo in the uterus, the most unique process of mammalian embryogenesis. Finally, 
we will review the genetic and epigenetic changes that underlie these developmental 
processes 
 
2. Origin and Development of Germ Cells 
 
Germ cells may be defined as those cells, all of whose descendents will become sperm 
or eggs. In all sexually reproducing animals, these cells play a uniquely important role: 
the transmission (after meiotic recombination) of the genetic information from one 
generation to the next.  
 
The origin of the germ cell lineage, which includes the origin of the first primordial 
germ cells (PGCs), has been a topic of discussion in recent past. In many vertebrates 
and invertebrates, PGCs are formed in a specified location and are predetermined. But 
in mammals, tracking the germ cell location has been a difficult task.  
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PGCs appear during the embryonic development. In mammals, the fertilized egg 
undergoes several divisions (cleavage) before forming a blastocyst stage embryo that is 
ready to implant in the uterus (see details below). After implantation, the surface cells of 
the inner cell mass of the blastocyst forms the primitive endoderm and reminder of inner 
cell mass forms the primitive or embryonic ectoderm- specifically called the epiblast. 
Cells of the epiblast actually give rise to embryo proper.  
 
Many studies about the origin and differentiation of PGCs have been performed in 
mouse (Figure 1). However, mouse embryologists have been unable to identify any cells 
that give rise to germ cells in cleavage embryo nor in blastocyst stage. Even after 
implantation, 4-5 days postcoitum (dpc), they have not identified any germ cell specific 
cells. But in later developmental stages (i.e., by 8.5 dpc) identification of PGCs has 
been facilitated by detection of tissue non-specific alkaline phosphatase (TNAP) 
activity, which is expressed at high levels in PGCs. TNAP is not required for PGCs 
survival but is an invaluable marker. From the time of implantation to 8.5 dpc, a process 
called gastrulation takes place. Gastrulation is a process that results in the formation of 
the gut and the main body plan, which emerges when the cells on the outside of embryo 
move inwards. During this process, the mouse PGCs migrate from the base of the 
allantois at 8.5 dpc to their entry into the genital ridges, the site of the future gonads. At 
least in mouse, PGCs are derived from the epiblast (primitive/embryonic ectoderm), not 
from the endoderm. This was initially demonstrated by transplantation experiments of 
single epiblast cells at 6.0-6.5dpc with a lineage specific marker and following their fate 
of their clonal descendents. Most importantly, even at 6.5 dpc, PGCs lineage is not 
determined, i.e., they are still not lineage-restricted. Clonal analysis establishes that 
germ cell fate is determined in a group of 45 progenitor cells at about 7.2 dpc. By 
8.5dpc, PGCs start migrating towards the genital ridges (Figure 1). 
 

 
 

Figure 1. Migration of germ cells to the genital ridge in mouse: After fertilization, the 
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embryo undergoes early cleavage in the oviduct. By E5.5, the embryo implants in to the 
uterine wall, and precursors of PGCs are formed. By E7.5, PGCs’ fate is determined. 
From E8.5, PGCs start migrating and, by E10.5- 11.5, they reach the genital ridge that 

will constitute the gonads. (©2001 Terese Winslow (assisted by Caitlin Duckwall)) 
 
2.1. Migration of the Primordial Germ Cells towards the Gonad 
 
Since 8.5 dpc in mouse gastrula stage, germ cells can easily be detected by alkaline 
phosphatase staining, which allows us to follow their migration (Figure 1). At 
gastrulation stage, endoderm starts invaginating to form the hind gut. Thus, PGCs 
become incorporated into the hind gut, and then migrate into the adjacent connective 
tissue. By the time the hind gut is fully formed, the PGCs lie along its length and very 
few PGCs remain at the base of allantois. Germ cells remain in motion until they enter 
the genital ridge. Initially PGCs leave the hind gut individually, but then gradually they 
extend up to 40µm processes. With these processes they link to each other to form an 
extensive network. By 10 dpc, genital ridges start to form, and, by 10-11.5 dpc, 
networks of PGCs aggregate to form groups in the genital ridge. By this time, PGCs 
loose their extended processes and become non-motile. Once the germ cells reach the 
genital ridge, the expression of germ cell specific genes commences. 
 
3. Germ Cell Differentiation: Gametogenesis and Meiosis  
 
After germ cells migrate towards the gonads, they differentiate into sperm or eggs via a 
process called gametogenesis. The development into eggs or oocytes is known as 
oogenesis, while the development into sperm is known as spermatogenesis. Upon 
arrival to the genital ridge (which will become the gonads), the germ cells begin to 
differentiate into sperm or eggs. By 12.5 dpc, PGCs undergo two-three rounds of 
mitosis in both female and male mouse embryos. In the male genital ridge, mitosis 
proceeds no further, and enters G1 arrest -called prospermatogonia stage 
(prospermatogonia, or gonocytes, are the cells that differentiate from primordial germ 
cells to the first mature type of spermatogonia in the developing testis). Mitosis is 
resumed after birth. In the female genital ridge, germ cells enter meiotic prophase as 
primary oocytes and arrest at the diplotene stage at the time of birth (see details in 
Meiosis and Sexual Dimorphism sections.)  
 
Germ cells have to reduce their chromosome number by half during gametogenesis, so 
that at fertilization the diploid chromosome number is restored. PGCs (precursors of 
gametes) are initially diploid, and reduction from diploid to haploid state to form 
gametes occurs during a process known as meiosis. 
 
3.1. Meiosis: The Formation of Haploid Gametes 
 
Meiosis is a specialized cell division that occurs in all sexually reproducing organisms. 
During meiosis (Figure 2), diploid cells generate haploid daughter cells. A germ cell 
(2n, diploid) divides twice after a single DNA replication event: firstly, by separating 
the paternally inherited from the maternally inherited (homologous) chromosomes at 
meiosis I, and secondly, by separating sister chromatids of each chromosome during 
meiosis II, thereby producing four haploid (n) products (Figure 2). 
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Unlike mitosis, homologous chromosomes first pair and then segregate into separate 
nuclei during the first meiotic division (MI). MI has four stages- prophase I, metaphase 
I, anaphase I and telophase I. The prophase I of meiosis I is the most critical event, 
when homologues pairing as well as double strand break (DSB) formation and 
resolution leads to the exchange of genetic information between homologous 
chromosomes (recombination). Prophase I is further divided into five sub stages- 
leptotene, zygotene, pachytene, diplotene and diakinesis. In leptotene, condensation and 
coiling of already replicated DNA takes place; in zygotene, pairing of homologues 
occurs, forming bivalents. A synaptonemal complex of proteins forms between 
homologue. At pachytene, crossing over between homologues occurs. Recombination 
by crossing over leads to genetic diversification. By diplotene, points of crossing over 
become visible under the microscope -called chiasma or chiasmata. By diakinesis, 
chromosome starts to uncoil. During metaphase I, homologous chromosomes attach to 
the poles of the spindle, in anaphase I homologues separate to opposite poles, and in 
telophase I chromosomes uncoil. Meiosis II has 4 stages- prophase II, metaphase II, 
anaphase II and telophase II. In prophase II, coiling of sister chromatids occurs; in 
metaphase II, sister chromatids align at the equatorial plate and by anaphase II, sister 
chromatids segregate to opposite poles. Finally, in telophase II, cytokinesis takes place 
to form haploid products. 
 

 
 

Figure 2. Meiosis. The detailed sequence of events is shown for two pairs of 
homologous chromosomes. At the initiation of meiosis I, chromosomes condense and 

each homologous pair forms a bivalent. Within the bivalents, crossing over occurs, 
which involves breakage of chromosome arms and exchange of DNA. Meiosis I 

proceeds to form two nuclei, each having one member of each homologous pair with the 
two sister chromatids still attached through the centromeres. During the second meiotic 
division, sister chromatids separate. As a result, the final products of meiosis contain a 
single copy of each chromosome and are haploid. (Reproduced from Human Genetics 

Concepts and Applications by Ricki Lewis ©2008 McGraw-Hill Companies, Inc.) 
 
3.1.1. Crossover and Recombination: The Basis of Genetic Variability 
 
Crossing over results in the exchange of genetic information (recombination) between 
chromosomes of different parental origin. Therefore, the offspring receives 
chromosomes with different allelic combinations than those present in any of the 
parents. Crossing over is one of the specialized steps of prophase I of meiosis. During 
pachytene, crossing over between non-sister chromatids of homologues takes place. At 
least one crossover is required per chromosome arm for proper segregation of the 
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chromosomes to the poles of the spindle. During meiosis I, crossovers hold the 
homologues together until they migrate toward opposite poles. Inefficient crossing over 
impairs chromosome segregation, resulting in aneuploid gametes and offspring. Thus, 
crossing over has a double role- firstly, producing genetic diversification by 
recombination; secondly, supporting proper chromosome segregation.  
 
3.2. Sexual Dimorphism- Oogenesis vs. Spermatogenesis 
 
In males, meiosis and germ cell differentiation commence after attaining puberty and 
continue throughout adult life. Diploid spermatogonia undergo mitosis to generate an 
infinite pool of primary spermatocytes, which enter meiosis to generate haploid 
spermatids that will differentiate into sperm. The end product of meiosis is four haploid 
sperm from each primary spermatocyte. 
 

 
 

Figure 3. Mammalian Oogenesis and Spermatogenesis: Oogenesis: Fetal ovaries contain 
about 500,000 (in humans) primary oocytes arrested at the diplotene stage of meiosis I. 

Meiosis I is resumed around the time of ovulation. Meiosis II is completed only if 
fertilization occurs. Only one cell per meiosis serves as the functional ovum. 

Spermatogenesis: Spermatogonia divide by mitosis to produce primary spermatocytes. 
After subsequent meiotic divisions, mature sperms are released. From each primary 

spermatocyte, four haploid sperms are formed. 
 
In females, meiosis I comences during fetal development, including recombination. At 
the last stage (diplotene) of prophase I, the oocyte enters the dictyate arrest. The oocyte 
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remains in that dormant state until the female reaches puberty. During each menstrual 
cycle, a selected number of oocytes are ovulated and resume meiosis. They complete 
the first meiotic division and half of the chromosomes are extruded to the first polar 
body, while the rest remain in the egg; again, the egg is arrested at metaphase II. Upon 
fertilization, the egg completes meiosis II and releases a second polar body containing 
half of the sister chromatids. Therefore, the result of female meiosis is one haploid egg, 
while the rest of the meiotic products are extruded to the polar bodies and, eventually, 
degenerate. Notice that only one of the four possible products of meiosis is transmitted 
to the offspring and it has been generally assumed that all four products have similar 
probabilities for doing so. However, unequal segregation of chromosomes or chromatids 
between the ovum and polar bodies has been documented in female meiosis -this is 
called maternal meiotic drive. The effect of meiotic drive is observed in heterozygous 
loci, such that certain alleles are preferentially retained in the egg during the first or 
second meiotic divisions and, therefore, have a selective advantage to be passed to the 
offspring. 
 

OOGENESIS SPERMATOGENESIS 

1. During embryogenesis, germ cells 
enter the fetal ovary, where diploid 
oogonia multiply by mitotic divisions. 
Next they initiate the prophase of meiosis 
I and become primary oocytes. They 
become arrested at this stage before birth. 
Further growth and development of the 
primary oocyte is delayed until puberty. 

1. Germ cells enter the testis, and arrest 
in G1 phase of the cell cycle. After birth, 
spermatogonia multiply by mitotic 
divisions to produce an infinite pool of  
spermatocytes. 

 

2. During ovulation, one or several 
oocytes resume meiosis I and progress 
until metaphase II, but meiosis II is only 
completed if fertilization occurs. 

2. Differentiation into sperm takes 
place continuously after reaching puberty, 
by  completion of meiosis I and meiosis II. 
 

3. The final product of meiosis is one 
haploid egg (ovum) and two-three small 
polar bodies from each primary oocyte 
that degenerate. 

3. The final product of meiosis is four 
haploid sperm from each primary 
spermatocyte. 

 
Table 1. Main differences between oogenesis and spermatogenesis in mammals. 

 
3.3. Meiosis Success in Males and Females and Its Consequences 
 
The female meiotic process is highly error prone, especially in humans compared to 
other species. Errors in chromosome segregation during meiosis result in the production 
of eggs or sperm with abnormal numbers of chromosomes, rather than the normal 
complement. When these gametes undergo fertilization, they produce aneuploid 
embryos. Aneuploids are cells missing chromosomes or having extra chromosomes -
e.g., 2 -1n (monosomics) or 2 1n + (trisomics). About 20% of human conceptions are 
lost as a result of meiotic errors.  
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Aneuploidy is the result of non-disjunction. In normal meiosis, homologues separate 
and each of the resulting gametes receives only one member of each chromosome pair. 
But sometimes, a chromosome pair or a sister chromatid fails to separate at anaphase of 
the first or second meiotic division, respectively. This produces a gamete that has two 
copies of a particular chromosome or none. When such gamete participates in 
fertilization, the resulting zygote has, in humans for instance, either 45 ( 2 -1n ) or 47 
( 2 1n + ), instead of 46 ( 2n ) chromosomes. Abnormal chromosomal number has a wide 
range of implications in the embryonic development, depending on the chromosome 
affected. Most of the aneuploid embryos do not survive to birth, but those who do so 
(such as Down syndrome, Turner syndrome, etc.) have developmental problems that 
include mental retardation, sterility, stunted growth etc. 
 
Most of the aneuploidies are caused by errors during female meiosis I. Male meiosis 
errors, as well as mitotic non-disjunction prior to meiosis or after fertilization, have also 
been reported to generate aneuploid embryos. As mentioned above, meiosis is a 
continuous process in males, while in females it is arrested at the dictyate stage for days, 
months or years. Meiotic segregation errors escalate with age in females, increasing the 
incidence of conceptions with developmental abnormalities such as Down syndrome 
(trisomy 21) and aneuploidy-related miscarriages. Is is thought that these errors are the 
result of the progressive deterioration of the attachments of the homologous 
chromosomes between themselves and to the spindle, thereby leading to non-disjunction 
when meiosis finally resumes. Male gametes, in contrast, appear to be more prone to 
carry other types of mutations due to the larger number of mitotic divisions that occurs 
in spermatogenesis compared to that in oogenesis. However, recent studies in mouse 
have revealed that cell-cycle check points are more permissive during female oogenesis 
than male spermatogenesis. Consequently, most spermatocytes carrying mutations that 
affect spermatogenesis are rapidly eliminated, while eggs with aneuploidies often 
survive to be fertilized. 
 
- 
- 
- 
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