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Blood is a two-phase liquid exhibiting non-Newtonian rheological behavior. Viscosity 
of blood depends on the acting shear forces and is determined by hematocrit value, 
plasma viscosity and the mechanical properties of red blood cells (RBC) under given 
shear conditions. RBC are highly deformable bodies and this property significantly 
contributes to blood flow both under bulk flow conditions and in microcirculation. 
Another important rheological property of RBC is their tendency to reversible 
aggregation. The size of RBC aggregates is inversely proportional to the magnitude of 
shear forces, as the aggregates are dispersed when the shear forces get higher. RBC 
aggregation also affects the fluidity of blood, especially in the low-shear regions of the 
circulatory system. Blood rheology has been reported to be altered in various 
physiopathological processes. Alterations in hematocrit value significantly contribute to 
hemorheological variations in diseases and in certain extreme physiological conditions. 
RBC deformability and aggregation are also sensitive to local and general homeostasis. 
RBC deformability is affected by the alterations in the properties and associations of 
membrane skeletal proteins, together with cell volume and cytoplasmic viscosity 
alterations as a result of fluid-electrolyte imbalance. Such alterations may result from 
genetic disorders or might be induced by local metabolic deteriorations in tissues, 
oxidant stress, activated leukocytes, etc. Aggregation is mainly determined by plasma 
composition and surface properties of RBC. Increased plasma concentrations of acute 
phase reactants in inflammatory disorders is a common cause of increased RBC 
aggregation. Additionally, aggregation tendency of RBC is modified by the alterations 
of surface properties. Such alterations can be induced by the aging process of RBC, 
oxygen free radicals, proteolytic enzymes, etc. Impairment of blood fluidity may 
significantly affect tissue perfusion and result in functional deteriorations, especially if 
the vascular properties are also disturbed by disease processes. 
 
1. Introduction 
 
1.1. Historical Perspectives 
 
Prior to the realization of the cellular structure of living material, all medical theory and 
practice was based on the concept of "humors". The concept of "humors" was, in turn, a 
direct application of Greek natural philosophy to medicine; Hippocrates is known as the 
father of humeral pathology theory. According to this antique medical theory, the 
human body contained a well-balanced mixture of four juices (or humors): sanguine, 
choleric, phlegmatic and melancholic. Early physicians believed that the imbalance 
between various humors of the body would cause disease and treatment should be based 
on re-establishing this balance. It is interesting to note that the diagnosis of this 
imbalance was mostly done by inspecting blood samples from patients and determining 
the relative amounts of each humor. The melancholic humor was the lowest, dark part 
of clotting blood, the choleric humor was the serum separating from the clotting blood, 
and the sanguine humor was represented by red blood cells. Phlegmatic humor or juice 
was accepted to be visible only in the blood of patients and was located on top of 
melancholic humor, with the amount of this humor directly related to the severity of the 
disease. We now know that this phlegmatic portion of the blood is, in reality, the "buffy 
coat" in clotted or sedimented blood and is composed of white blood cells, platelets and 
polymerized fibrinogen.  
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According to the humoral pathology approach, the standard procedure to re-establish the 
balance between humors was phlebotomy (i.e. removal of blood from the body). Many 
physicians recognized that the properties of blood were altered in situations such as 
inflammation and that this alteration prevented adequate blood flow; phlebotomy helped 
to restore blood flow. Interestingly, most of these earlier observations were made prior 
to William Harvey’s discovery of the circulation in the seventeenth century.  
 
Herman Boerhaave, who introduced the laws of physics into medical thinking, also 
enriched medical ideas of the seventeenth century. Boerhaave’s intravital microscopy 
studies resulted in a better understanding of blood flow disturbances that were believed 
to be caused by the imbalance of humors. In the mid-nineteenth century, JML Poiseuille 
made significant contributions to physiology and fluid mechanics by observing the flow 
behavior of fluids in glass capillary tubes and developing Poiseuille’s Law for tube 
flow. 
 
Although humoral pathology ideas began to be based on more scientific concepts 
towards the end of the nineteenth century, cellular pathology theory was also being 
evolved. Rudolf Wirchow was very successful in establishing a new concept of disease 
that was based on the structural and functional disturbances of cells. These disturbances 
could be detected under a microscope by observing tissue samples that were fixed and 
dyed. Humoral pathology theory rapidly lost ground to the cellular pathology theory, 
and even the oldest method of medical treatment with proven value in many patients 
was abandoned: hemodilution by various means was eliminated from the practice of 
medicine. 
 
The influence of Wirchow's cellular pathology theory on twentieth century medicine 
was enormous, with every disease explained by microscopic disturbances observed in 
dead, fixed tissues. Although highly respected by the medical community, such an 
approach failed to consider the dynamic nature of living systems and resulted in a 
highly static view of disease processes. The cellular pathology approach grew very 
rapidly especially during the first half of twentieth century and, parallel to this growth, 
concepts that were seen as being related to humoral pathology theory were deemed to be 
non-scientific. 
 
During the early part of the twentieth century, Robin Fahraeus, a Scandinavian 
pathologist, began exploring the flow properties of blood. He discovered that the 
suspension stability and fluidity of blood were altered during disease processes, 
explained the humoral pathology concepts by modern scientific ideas, and provided a 
basis for understanding medical practices of previous centuries.  
 
These ideas of Robin Fahraeus were not widely appreciated until the latter part of the 
twentieth century, although the measurement of blood sedimentation rate, a test that he 
described, remains the most widely used routine laboratory procedure in modern 
medicine. During the last few decades, the dynamic nature of blood flow and flow 
behavior has been widely investigated. Development of appropriate techniques to study 
the flow behavior of blood and its components, together with the evolution of modern 
concepts of fluid dynamics, has thus lead to the growth of a new medical field: 
hemorheology.  
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1.2. Principles of Rheology 
 
Rheology is the scientific field that deals with the flow and deformation behavior of 
materials. The simplest definition of this behavior can be provided by measuring the 
displacement (or shape or size change) of a given amount of material under the 
influence of a force of known magnitude. The materials under consideration might be 
solids or fluids (including liquids and gases). 
 
Deformation can be defined as the relative displacement of material points within the 
body. Solids react to the application of a force by a given deformation. If a solid is 
elastic, the deformation is proportional to the applied force and the original shape is 
recovered when the force is removed. If a permanent deformation remains after the 
removal of force the solid is said to be plastic. Fluids continuously deform―or 
flow―due to the application of applied forces. Some materials exhibit viscoelastic 
behavior, which is a combination of fluid-like and solid-like behavior. 
 
In studying the degree of deformation (or flow) of a material, the force applied per unit 
area must be considered. This deforming force, termed stress, may have several 
components including: 1) Shear stress, the force per unit area acting parallel to the 
surface; 2) Normal stress, the force per unit area acting perpendicular to the surface. The 
latter is defined as pressure in a fluid. The degree of deformation is termed strain, which 
also has various components associated with the different stress components. For 
example, shear stress results in shear strain, often termed shear rate, in which the layers 
of material move parallel to each other in a progressive manner.  
 
Early studies in fluid mechanics revealed that, for a pipe of constant diameter and length 
and for a given fluid, the resistance to flow depended on the flow conditions within the 
pipe. Experimental data obtained during the second half of nineteenth century revealed 
that during slow flow the pressure drop (reflecting the resistance to flow) was 
proportional to the speed of flow. Under these conditions, it has been observed that the 
liquid particles move smoothly in adjacent planes (laminae) parallel to the tube wall; 
this type of flow is called laminar flow. With increasing flow rate, there is a tendency 
for the fluid flow to become irregular, with fluid moving in swirls and irregular patterns. 
This type of chaotic flow is termed turbulent, with the degree of turbulence increasing 
with flow rate. Under these conditions, the pressure drop is proportional to the square of 
the speed of flow: for the same pipe and fluid, resistance to flow is greater with 
turbulence. 
 
Under laminar flow conditions, a shear stress-shear rate relationship is used to define 
the fluidity of liquids. This relationship reflects the internal resistance between fluid 
layers (laminas) and thus reflects the viscosity of the fluid; the viscosity of a liquid can 
be calculated by dividing the shear stress by the shear rate. From a rheological point of 
view, liquids can be divided into two main groups: 1) Newtonian liquids in which the 
viscosity is independent of variations in shear rate or shear stress. For these fluids the 
slope of the shear stress―shear rate relation―is constant over the range of shear stress 
examined, and thus the viscosity is constant; 2) Non-Newtonian liquids in which the 
apparent viscosity is not a constant but rather depends on the magnitude of the shear 
stress or shear rate. The apparent viscosity of a non-Newtonian fluid may decrease 
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(shear-thinning behavior) or increase (shear-thickening behavior) as the shear rate is 
increased. Non-Newtonian liquids may have a yield stress, below which the shear rate is 
zero (no flow), resulting in an infinite value for apparent viscosity. The flow behavior of 
non-Newtonian liquids may also be time-dependant; the viscosity of a thixotropic liquid 
decreases with time at a fixed shear rate. Note that for both classes of fluids, the 
viscosity of a liquid depends on its temperature. Several units have been used for 
viscosity, with the most common being milliPascals.sec (mPa.sec) which is numerically 
equal to centiPoise (cP); water at 20 °C has a viscosity of 1.0 mPa.sec or 1.0 cP. 
 

 
 

Figure 1. Shear stress-shear rate and viscosity-shear rate relationships for  
Newtonian and non-Newtonian liquids. 

 
The viscosity of a liquid can be measured by a viscometer, which is a device built for 
studying the stress-strain relations in a liquid. Capillary viscometers are most widely 
used devices for measuring viscosity of Newtonian liquids. The working principle of a 
capillary viscometer is based on the measurement of flow rate of the liquid through a 
well-defined capillary tube under a certain pressure difference; at constant temperature, 
flow rate decreases with increasing viscosity. Capillary viscometers can also be used for 
flow measurements of non-Newtonian liquids, but estimation of viscosity is difficult 
since the shear rate varies across the diameter of the tube (i.e. maximum at the wall, 
zero at the center). Rotational viscometers of various types are thus more commonly 
used for studying non-Newtonian liquids. In a rotational viscometer, the liquid under 
investigation is sheared between two surfaces, either under constant shear stress or shear 
rate, and the response (resulting shear rate or stress respectively) is measured. The 
geometric design of the shearing portion varies between instruments, but is usually 
designed to provide a uniform shear rate or shear stress in the sample being studied. 
 
1.3. Definition of Hemorheology 
 
Hemorheology deals with the flow and deformation behavior of blood and its formed 
elements (i.e. red blood cells, white blood cells, platelets). The rheological properties of 
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blood are of both basic science and clinical interest: the details of blood rheology are 
still being studied, and blood rheology can be altered in many disease states. There is an 
increasing amount of clinical and experimental data clearly indicating that the flow 
behavior of blood is one the primary determinants of proper tissue perfusion.  
 
2. Rheology of Blood 
 
2.1. Structure of Blood 
 
From a biological point of view, blood can be considered as a tissue composed of 
various types of cells (i.e. red blood cells, white blood cells, and platelets) and a liquid 
intercellular material (i.e. plasma). From a rheological point of view, blood can be 
thought of as a two-phase liquid; it can also be considered as a solid-liquid suspension 
with the cellular elements being the solid phase. However, blood can also be considered 
as a liquid-liquid emulsion based upon the liquid-like behavior of red blood cells under 
shear. 
 
About 40 to 45% of the blood volume is occupied by the cellular elements; this volume 
percentage is termed hematocrit. The vast majority of the blood cellular elements are 
red blood cells (RBC): there are about 5 million RBC in one mm3 of blood, but only 
about 5000 white blood cells (WBC) and 300 000 platelets exist in the same volume. 
Given the relatively very small number of WBC and the small size of platelets, about 
99% of cellular elements by volume are RBC. 
 
The liquid phase of blood (plasma) approximates the composition of extracellular fluid, 
especially in terms of micro ions called electrolytes. In addition, plasma contains 6 to 8 
grams of proteins per 100 ml, with the majority of these proteins divided into albumin 
and globulin fractions. Plasma also contains fibrinogen, a soluble protein that during the 
clotting process is converted to an insoluble, polymerized form called fibrin. Fibrinogen 
is also an important determinant of the flow behavior of blood, in that this protein is 
mainly responsible for the reversible aggregation of RBC and hence much of its non-
Newtonian flow behavior. 
 
2.2. Blood Viscosity, ex vivo 
 
The viscosity of blood is usually measured, at constant temperature, by a rotational 
viscometer; in order to prevent clotting the blood sample is collected into a syringe or 
tube containing a chemical anticoagulant. Since blood is a non-Newtonian suspension, 
its fluidity cannot be described by a single value of viscosity. Rotational viscometers 
allow the measurement of viscosity over a range of shear stresses (or shear rates), 
yielding a flow or viscosity curve for a blood sample.  
 
As shown in Figure 2, normal human blood exhibits shear-thinning behavior: at low 
shear rates or shear stresses the apparent viscosity is high, whereas the apparent 
viscosity decreases with increasing shear and approaches a minimum value under high 
shear forces. At high shear rates above 100 to 200 sec-1 , the viscosity of normal blood 
measured at 37 ºC is about 4 to 5 cP and is relatively insensitive to further increases of 
shear. The viscosity becomes more sensitive to shear forces below 100 sec-1, and 
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increases exponentially as the shear rate is decreased. Nominal values for the viscosity 
of normal blood are about 10 cp at 10 sec-1, about 20 cp at 1 sec-1, and about 100 cp at 
0.1 sec-1. Thus at lower shear rates, blood viscosity becomes extremely sensitive to the 
decrement in shear forces. At stasis, normal blood has a yield stress of about 0.1 mPa. 
 

 
 

Figure 2. Shear rate-viscosity curves for normal blood, RBC suspended in protein-free 
buffer (no RBC aggregation) and rigidified RBC in plasma. The differences in viscosity 

at the lower and upper end of the shear rate range demonstrate the effects of RBC 
aggregation and deformability, respectively. (For explanation see Section 2.3.3). 

 
2.3. Determinants of Blood Fluidity 
 
Blood is a two-phase liquid and its fluidity at a given shear rate and temperature is thus 
determined by the rheological properties of the plasma and cellular phases, and by the 
volume fraction (i.e. hematocrit) of the cellular phase.  
 
2.3.1. Plasma Viscosity  
 
Since plasma is the suspending phase for the cellular elements in blood, a change in its 
viscosity directly affects blood viscosity regardless of the hematocrit and the properties 
of the cellular elements. The normal range of plasma viscosity is between 1.10 and 1.35 
cp at 37 ºC, yet this value may reach about 2 cp in various diseases; plasma is a 
Newtonian fluid yet technical artifacts have led some to report non-Newtonian behavior. 
In general, plasma viscosity is a good, non-specific indicator of disease processes, and is 
found to be increased in patho-physiological conditions associated with acute phase 
reactions. This increase is closely related to the protein content of plasma: acute phase 
reactants, such as fibrinogen, contribute significantly to the non-specific increase of 
plasma viscosity in disease processes. Plasma viscosity can increase up to 5-6 cP in 
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patients with abnormal protein levels such as seen in clinical states termed para-
proteinemias. 
 
2.3.2. Hematocrit Value 
 
Under laminar flow conditions, the presence of cellular elements disturbing the flow 
streamlines is the primary reason why blood viscosity is higher than plasma viscosity. 
The contribution of this disturbance to the magnitude of blood viscosity can be 
appreciated by calculating the relative viscosity of blood (i.e. blood viscosity divided by 
plasma viscosity). With increasing amounts of cells, flow lines are progressively 
disturbed, and relative viscosity increases above its value of 1.0 for plasma alone. The 
degree of disturbance of flow streamlines and consequently the viscosity of blood is 
thus strongly dependent on the concentration of the cellular elements (i.e. hematocrit). 
As shown in Figure 3, there is an exponential relationship between the hematocrit value 
and blood viscosity, such that at higher levels of hematocrit, blood viscosity becomes 
increasingly sensitive to hematocrit alterations. At medium to high shear rates, there is 
about a 4% increase of blood viscosity per unit increase of hematocrit (e.g. a change 
from 50% to 51% hematocrit increases blood viscosity by 4%).  
 
- 
- 
- 
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