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In the early days of the 20th century a set of important observations in atomic and 
molecular physics could not be explained on the basis of the laws of classical physics. 
One of the main findings was the emission of light by excited atoms with very particular 
frequencies. To explain those findings a new development in physics was necessary, 
now known as quantum mechanics. In particular, the concept of stationary states was 
introduced by Niels Bohr, in 1913, in order to explain those observations and the 
stability of atoms. According to E.C. Kemble (1929), the existence of discrete atomic 
and molecular energy levels brought into mechanics a new kind of atomicity superposed 
on the atomicity of electrons and protons. We review here in a historical context the 
topic of stationary states in the quantum world, including the generalization to the 
primary ideas. We also discuss the stationary states in one dimensional parabolic wells 
and the three dimensional Coulomb and parabolic cases.  
 
1. Introduction 
 
At the beginning of the 20th century, some experimental observations in atomic and 
molecular physics were impossible to explain on the basis of classical physics. It was 
necessary to introduce revolutionary concepts that led to the foundation of quantum 
mechanics. In this context the concept of stationary states played an essential role in the 
development of new ideas that started to explain the atomic world.  
In 1908 J.R. Rydberg and W. Ritz studied in detail the spectra of the light emitted by 
excited atoms. They found that the spectra consisted of a set of defined lines of 
particular wavelengths. Furthermore, the set of spectroscopic lines were dependent only 
on the atom under study. Through the so-called combination principle they put the data 
in a most systematic form. Their principle states that the frequency of a particular 
spectral line can be expressed as a difference between some members of the set of 
frequency lines.  
 
These findings could not be explained by the accepted atomic model at that time, 
proposed by J.J. Thomson, claiming that the electrons were embedded in a positively 
charged cloud, whose extent was determined by the atomic radius. That model could not 
explain also the data obtained by H.W. Geiger and E. Mardsen, who under the 
supervision of Rutherford, were studying the interaction of charged α -particles with 
gold foils [1]. They observed that a considerable fraction of the α -particles was 
deflected by large angles. This effect could not be attributed to the electrons since they 
are much less massive. Thus, they concluded that the source of deflection must be the 
positive charge concentrated in a much smaller volume than the one generated by the 
atomic radius. In 1911 Rutherford proposed a new atomic model which assumed that all 
the positive charge is located at the center of the atom with a very dense distribution 
with a radius much smaller that the atomic one. The electrons then would circulate 
around the nucleus in a way similar to the planets moving around the sun.  
 
Although Rutherford’s planetary atomic model explained qualitatively well the 
deflection of α -particles, it had two major deficiencies. First it could not account for 
the spectra of radiation from atoms, which was not continuous but discrete. The other 
major problem was that, according to electrodynamics, an electron moving around the 
nucleus is under a constant acceleration, must radiate energy. This fact would lead to a 
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situation in which the electron would loose energy continuously and would collapse on 
the nucleus.  
 
2. Stationary Orbits in Old Quantum Mechanics 
 
2.1. Quantized Planetary Atomic Model 
 
In 1911, the two-and-a half-thousand-year-old philosophical concept of atom turned 
into a scientific matter when Rutherford’s planetary atomic model emerged from the 
interpretation of the experimental data on the scattering of α  particles [1]. The curious 
fact that has been noticed while these particles were shot at gold foils was that some of 
them bounced as if they were colliding with very massive objects. To explain these 
findings Rutherford proposed that the atom was composed of a positive central massive 
nucleus and the electrons were revolving around it, i.e. very similar to a miniature solar 
system. However, this famous model was not electrodynamically viable. Atomic 
stability was simply not assured for Rutherford’s semiempirical model, since 
accelerated charges radiate energy and the electrons moving around the nucleus would 
lose energy and eventually collapse on to the nucleus.  
 
Another important set of empirical data, is that obtained from the emission of light by 
excited atoms. It was observed that the light emitted had very characteristic frequencies 
and was a footprint for each atom. These observations were put in a systematic form in 
1908 through the so-called combination principle formulated by J.R. Rydberg and W. 
Ritz. Their principle says that the frequency of a spectral emission or absorption line 
can be expressed as a difference between the members of a set of well defined 
frequency terms. Rutherford’s model was completely silent on the dynamical origin of 
the spectral lines. It was the great merit of Bohr to formulate in 1913 the hypotheses, or 
postulates, that could allow the explanation of the atomic spectral lines based on the 
planetary atomic structure.  
 
2.2. Bohr’s Hypotheses and Quantized Circular Orbits 
 
The hypotheses that Bohr added to the Rutherford model in order to explain the 
spectroscopic information are the following [2]:  
 
1. An atom can exist only in special states with discrete values of energy. In other 
words, the electrons moving around an atom can be found only in certain special orbits 
that Bohr called stationary states.  
2. When an atom makes a transition from one stationary state to another, it emits or 
absorbs radiation whose frequency ν  is given by the frequency condition  
 

1 2h E Eν = − ,   (1) 
 
where 1E  and 2E  are the energies of two stationary states and h is Planck’s constant.  
 
The value of Planck’s constant is 
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34 156.6260693(11) 10 J.s 4.13566743(35) 10 eV.sh − −= × = × . This is according to 

CODATA of 31 December 2002. CODATA is published every four years.The two 
digits between the parentheses denote the uncertainty (standard deviation) in the last 
two digits of the value 
 
3. In the stationary states, the electrons move according to the laws of classical theory. 
However, only those motions are performed for which the following quantum condition 
is fulfilled  
 

( 1 2 3 )p dq nh n= , = , , , ...; ,∫v  (2) 
 
 where p  is the momentum of the electron and q  is its coordinate along the stationary 
orbit. The integration should be taken along the orbit over one period of the cyclic 
motion.  
 
Bohr’s theory claimed that those frequency terms, when multiplied by h , give distinct 
energy levels in which the electrons move around the nucleus. This meant that these 
were the only possible states in which the electrons in the atom could exist.  
 
Let us assume that an electron in a Hydrogen atom is revolving around the nucleus on a 
circular orbit according to the Newtonian equations of motion. For a circular orbit, the 
absolute value of the momentum p  is constant and then the quantum hypothesis (3) 
leads to  
 

2 ( 1 2 3 )p a nh nπ⋅ = , = , , ,...  (3) 
 
where a  is the radius of the orbit. Thus, a  is given by the value of the momentum that 
can be obtained from the balance between the centrifugal force and the Coulomb force, 
i.e.,  
 

2 2

2
04

p e
ma aπ

= .
ε

 (4) 

 
Combining the two equations, one obtains  
 

2 2
0

2 ( 1 2 3 )n
h n

a n
meπ

= = , , ,... .
ε

 (5) 

 
The latter formula gives the radii of the quantized electron circles in the hydrogen atom. 

In particular, 
2

0
1 B 2

h
a a

meπ
≡ =

ε
, is known as the Bohr radius and is taken as an atomic 

length unit.  
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2.3. From Quantized Circles to Elliptical Orbits 
 
Wilson [3] and Sommerfeld [4] extended Bohr’s ideas to a large variety of atomic 
systems between 1915 and 1916.  
 
The main idea is that the only classical orbits that are allowed as stationary states are 
those for which the condition  
 

1k k kp dq n h k n= = ,..., ,∫v  (6) 
 
with kn  a positive integer, is fulfilled. The weak theoretical point is that in general these 
integrals can be calculated only for conditionally periodic systems, because only in such 
cases a set of coordinates can be found, each of which goes through a cycle as a 
function of the time, independently of the others. Sometimes the coordinates can be 
chosen in different ways, in which case the shapes of the quantized orbits depend on the 
choice of the coordinate system, but the energy values do not.  
 
In particular, when the 3D polar coordinates are employed, Eq. (6) gives the 
Sommerfeld ellipses characterized by  
 

r rp dr n h p d n h p d n hθ θ φ φθ φ= , = , = .∫ ∫ ∫v v v  (7) 
 
Now, since pφ  is a constant, one gets immediately the ‘quantization’ of the angular 
momentum of the ellipse along the z  axis  
 

1 2
2
mhp mφ π

= , = ± ,± ,⋅⋅⋅ .  (8) 

 
The quantum number m  was called the magnetic quantum number by Sommerfeld who 
used it as a measure of the direction of the orbit with respect to the magnetic field and 
thus explaining the Zeeman effect, i.e., the splitting of the spectroscopic lines in a 
magnetic field. Unless for the value 0m =  which is considered as unphysical, this ‘old’ 
m  is practically equivalent with Schrödinger’s m , which mathematically is the 
azimuthal separation constant but has a similar interpretation.  
 

 
 
Figure 1. Bohr-Sommerfeld electron orbits for 1n = , 2 , and 3 , and the allowed values 
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for l . 
 

 
 

Figure 2. Spatial quantization of Bohr-Sommerfeld orbits for azimuthal numbers k  = 
1,2, and 3. 

 
Interestingly, and this is sometimes a source of confusion, the ‘old’ azimuthal quantum 
number is denoted by k  and is the sum of nθ  and m . It gives the shape of the elliptic 

orbit according to the relationship a n
b k
= , where rn n k= + , established by 

Sommerfeld. Actually, this k  is equivalent to Schrödinger’s orbital number l  plus 1, 
but again their mathematical origin is quite different.  
 
2.4. Experimental Proof of the Existence of Atomic Stationary States 
 
The existence of discrete atomic energy levels was evidenced for the first time by J. 
Franck and G. Hertz in 1914 [5]. They observed that when an electron collides with an 
atom (mercury in their case), a transfer of a particular amount of energy occurred. This 
energy transfer was recorded spectroscopically and confirmed Bohr’s hypotheses that 
atoms can absorb energy only in quantum portions. Even today, the experiment is 
preferentially done either with mercury or neon tubes. From the spectroscopic evidence, 
it is known that the excited mercury vapor emits ultraviolet radiation whose wavelength 
is 2536 Å, corresponding to a photon energy hν  equal to 4.89 eV.  
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Figure 3. (a) Schematic diagram of the Franck-Hertz experiment, where the tube is 
filled with a gas of Mercury; (b) typical plot recorded in a Franck-Hertz experiment 

with mercury, showing the periodic maxima. 
 
The famous Franck-Hertz curves represent the electron current versus the accelerating 
potential, shown in Fig. 3. The current shows a series of equally spaced maxima (and 
minima) at a distance of ∼  4.9 V. The first dip corresponds to electrons that lose all 
their kinetic energy after one inelastic collision with a mercury atom, which is then 
promoted to its first excited state. The second dip corresponds to those electrons that 
have the double amount of kinetic energy and loses it through two inelastic collisions 
with two mercury atoms, and so on. All these excited atoms emit the same radiation at 
∼  2536 Å. But which is the ‘first’ excited state of mercury? It is spectroscopically 
denoted by 3

1P  in Fig. (4). Notice that the other two P  states cannot decay to the 

ground state 1
0S  because the dipole emission is forbidden for them and therefore they 

are termed metastable. More details, such that the observed peak separation depends on 
the geometry of the tube and the Hg vapor pressure, are explained in the readable paper 
of Hanne [6].  
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Figure 4. Simplified Mercury’s level diagram in the low-energy region in which the so-

called hyperfine structure is neglected. The numbers 6 and 7 are Bohr’s ‘whole 
numbers’ or Schrödinger’s principal quantum numbers. 

 
3. Stationary States in Wave Mechanics 
 
3.1. The Schrödinger Equation 
 
According to L. Pauling and E. Bright Wilson Jr. [7], already in the years 1920-1925 a 
decline of the ‘old quantum theory’ as the Bohr-Sommerfeld atomic theory is 
historically known and which is based on the ‘whole number’ quantization of cyclic 
orbits was patent; only very recently there is some revival, especially in the molecular 
context [8]. But in 1925, a quantum mechanics based on the matrix calculus was 
developed by W. Heisenberg, M. Born, and P. Jordan and the best was to come in 1926 
when Schrödinger in a series of four papers developed the most employed form of 
quantum mechanics, known as wave mechanics. The advantage of his theory of atomic 
motion is that it is based on standard (partial) differential equations, more exactly on the 
Sturm-Liouville theory of self-adjoint linear differential operators. Schrödinger starts 
the first paper in the 1926 series with the following sentence [9]:  
 
“In this paper I wish to consider, first the simplest case of the hydrogen atom, and show 
that the customary quantum conditions can be replaced by another postulate, in which 
the notion of ‘whole numbers’, merely as such, is not introduced.”   
Indeed, he could obtain the basic equation of motion in nonrelativistic quantum 
mechanics, the so called Schrödinger equation for the wavefunctions ( )x tΨ , , and 
provided several analytical applications, among which was the hydrogen atom. The 
original derivation is based on variational calculus within the Sturm-Liouville approach 
and was given eighty years ago. In his first paper of 1926, Schrödinger states that the 
wavefunctions Ψ  should be such as to make the ‘Hamilton integral’  
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( )2 2[ ] ( )S T q q V dψ τΨ = ,∂ /∂ +Ψ ,∫ =J  (9) 

stationary subject to the normalizing condition 2 1dτΨ =∫  which can be incorporated 
through the Lagrange multipliers method. The Euler-Lagrange equation of the 
functional [ ]S ΨJ  is the time-dependent Schrödinger equation  
 

i H
t

∂Ψ
= Ψ .

∂
=  (10) 

 
When the wave function of the time-dependent Schrödinger equation is written in the 
multiplicative form ( ) ( ) ( )x t x tψΨ , = F  one obtains a complete separation of the space 
and time behaviors of Ψ : on one side, one gets the stationary Schrödinger equation for 

( )xψ ,  
 

2 2

2 ( )
2
h d V x E
m dx

ψ ψ ψ− + = ,  (11) 

 
and on the other side, the simple time-dependent equation for the logderivative of F   
 

lndi E
dt

== F  (12) 

 
where the Dirac’s constant / 2h π= � . This decoupling of space and time components is 
possible whenever the potential energy is independent of time.  
 
The space component has the form of a standing-wave equation. Thus, it is correct to 
regard the time-independent Schrödinger equation as a wave equation from the point of 
view of the spatial phenomenology.  
 
3.2. The Dynamical Phase 
 
Furthermore, the time-dependence is multiplicative and reduces to a modulation of the 
phase of the spatial wave given by  
 

cos( ) sin( )iEte Et i Et− /= = / − / .= = =F  (13) 
 
The phase factor iEte− /= =F  is known as the dynamical phase. In recent times, other 
parametric phases have been recognized to occur, e.g., the Berry phase. The dynamical 
phase is a harmonic oscillation with angular frequency Eω = /=  and period T E= /= . In 
other words, a Schrödinger wavefunction is flickering from positive through imaginary 
to negative amplitudes with a frequency proportional to the energy. Although it is a 
wave of constant energy it is not stationary because its phase is time dependent 
(periodic). However, a remarkable fact is that the product ∗Ψ Ψ , i.e., the modulus 2| Ψ |  
of the Schrödinger constant-energy waves remains constant in time  
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ψ ψ∗ ∗Ψ Ψ =  (14) 

 
It is in the sense of their constant modulus that Schrödinger constant-energy waves are 
called stationary states.  
 
3.3. The Schrödinger Wave Stationarity 
 
Thus, non-relativistic quantum stationarity refers to waves of constant energy and 
constant modulus, but not of constant phase, which can occur as solutions of 
Schrödinger equation for time-independent potentials. In the Schrödinger framework, 
the dynamical systems are usually assumed to exist in stationary states (or waves of this 
type). It is worth noting that the preferred terminology is that of states and not of waves. 
This is due to the fact that being of constant energy the Schrödinger stationary waves 
describe physical systems in configurations (or states) of constant energy which can 
therefore be naturally associated to the traditional conservative Hamiltonian systems. 
Moreover, the localization of these waves can be achieved by imposing appropriate 
boundary conditions.  
 
3.4. Stationary Schrödinger States and Classical Orbits 
 
In the Schrödinger theory, a single stationary state does not correspond to a classical 
orbit. This is where the Schrödinger energy waves differ most from Bohr’s theory which 
is based on quantized classical cyclic trajectories. To build a wave entity closer to the 
concept of a classical orbit, one should use superpositions of many stationary states, 
including their time dependence, i.e., what is known as wave packets. Only 
monochromatic plane waves of angular frequency ω  correspond through the basic 
formula E ω= =  to a well-defined energy E  of the ‘classical’ particle but unfortunately 
there is no relationship between the wavevector k  and the momentum p  of the 
corresponding particle since a plane wave means only the propagation at constant 
(phase) velocity of infinite planes of equal phase. In other words, a criterium for 
localization is required in order to define a classical particle by means of a wave 
approach.  
 
In the one-dimensional case, a wave packet is constructed as follows  
 

( )( ) ( ) i k x tx t f k e dkωψ
+∞ ′ ′−
−∞

′ ′, = ,∫  (15) 

 
with obvious generalization to more dimensions. If ( )f k′  is written in the polar form 

( ) iF k e α′  and F  is chosen with a pronounced peak in a wavenumber region of 
extension kΔ  around the point k k′ = , then the wave packet is localized in a spatial 

region of extension 1x
k

Δ ≈
Δ

 surrounding the “center of the wavepacket". The latter is 

equivalent to the concept of material point in classical mechanics and travels uniformly 
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with the group velocity g
dv
dk
ω

= . This is the velocity that can be identified with the 

particle velocity dEv
dp

=  in classical mechanics and which leads to the de Broglie 

formula hp k
λ

= == . relating the momentum p  and the wavelength λ  of the quantum 

particle. 
 
 
 
- 
- 
- 
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