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Summary 

 

Shallow foundations are one of the most common types of foundations for buildings, 

retaining walls and other light structures. Spread footings are often the most inexpensive 

foundation solution compared with other types of foundation, such as piles and cais-

sons. The basic principle in shallow foundation design is to provide a sufficiently large 

contact area between the footing and the soil so that loading imposed onto the footing 

can be supported by the underlying soil without failure and excessive settlement. The 
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calculation of the bearing capacity of a footing, which is the maximum bearing stress 

that the soil can take at failure, is dependent on the properties of the soil, such as soil 

cohesion and friction, size and depth of the footing, and surcharge at the ground surface. 

In conventional working stress designs, an appropriate factor of safety should be used, 

usually about 2.5 – 3, in calculating the allowable bearing capacity of the soil. In limit 

state designs, load and strength reduction factors are applied in determining the bearing 

capacity for the footing.  

 

When calculating the bearing capacity of a footing based on the shear strength of the 

soil, there are basically two approaches: the total stress approach and the effective stress 

approach. The total stress approach is used to calculate the bearing capacity for the short 

term undrained condition of a saturated clay. The effective stress approach is used for 

the short and long term conditions for sand and the long term drained condition for clay.  

 

Foundation settlement is often a governing factor in footing design. The amount of ac-

ceptable settlement for footings should be less than 25 mm. Depending on the type of 

soil, the bearing pressure must be limited to a value that will not result in more than 25 

mm of total settlement over the life time of the structure. 

 

Raft or mat foundations are a type of shallow foundation in which the entire building 

area is covered by the footing. A raft is used when the soil is weak or compressible and 

the total area of the individual footings is more than 50% of the building size. In design-

ing a raft foundation, it is necessary to calculate the modulus of subgrade reaction. The 

modulus of subgrade reaction is defined as the ratio of the applied stress over the set-

tlement of the raft foundation. It is used to calculate the loading on the raft for design 

purposes. 

 

Construction of a footing requires excavation to a desired depth in the ground. The foot-

ing must be located below the maximum depth of frost penetration and seasonal varia-

tions of moisture, especially in expansive soils. During construction, ground water must 

be under control to prevent base instability or wetting and loosening of the soil at the 

base. Formwork is required unless individual shapes of the footing are excavated in the 

ground. The foundation of the footing should be examined by a qualified geotechnical 

engineer before pouring of the concrete to ensure that the soil is able to support the de-

sign bearing capacity. 

 

1. Introduction 

 

1.1. Foundations for Buildings 

 

Shallow foundations are used to transfer loads from a building column or retaining wall 

to the soil near the ground surface. Shallow foundations are usually located within 2-5 

m below the ground surface or basement level. Depending on the load bearing capacity 

of the soil and its compressibility characteristic, shallow foundations are to be located as 

close to the ground surface as possible. In regions of cold climates where the soil may 

freeze during winter months, the base of shallow foundations must be located below the 

maximum depth of frost penetration. This is to prevent settlement caused by freezing 

and thawing of the soil. 
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There are many types of shallow foundations, which range from simple spread footings 

to more complex combined footings. They all share one common principle, which is to 

distribute heavy load to a larger area that can be supported by the underlying soils with-

out causing failure or excessive settlement. 

 

1.2 Types of Shallow Foundations 

 

The most common type of shallow foundation is a spread footing as shown in Figure 1. 

The spread footing is simply a concrete pad that spreads the column load to a larger 

surface area, thus reducing stresses on the soil. The pad is usually square or rectangular 

in shape, but can be round or other shapes, depending on the need and available space. 

Although normally, the column load is applied at the geometric center of the pad, it is 

not uncommon that the applied load may create eccentricity and tilting of the footing. In 

this case, it is important to limit the highest stress under the footing to be less than the 

bearing capacity of the soil. 

 

A strip footing is normally used to support a wall. It is basically a long rectangular 

spread footing, see Figure 2. The loading on a strip footing is not necessarily located at 

its center because of the restriction on the property limits of a building. A strip footing 

is also called a continuous footing. 

 

 

 
 

Figure 1. Spread footing 
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Figure 2. Strip or continuous footing 

 

A combined footing supports two or more column loads, see Figure 3. The loading on 

each column is not necessary equal to each other and therefore, they can introduce mo-

ments in the footing. As a result, the stress distribution under a combined footing is not 

uniform. 

 
 

Figure 3. Combined footing 

 

A strap footing is composed of two spread footings tied together with a grade beam, see 

Figure 4. A grade beam is used to transfer moments from one footing to the other. This 

provides added rotation stability to the footing which will otherwise fail due to the ec-

centricity of the loading. 

 

 
 

Figure 4. Strap footing 
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A raft or mat footing is used to support the entire building or entire loaded area by using 

one very large footing. Normally, the soil is quite soft and compressive in this case, and 

a large footing area is required to support the column loads. Therefore, the footing is so 

large that it basically covers the entire building area. When individual footings cover 

more than 50% of a building area, it becomes more economical to use a raft footing. A 

mat or raft footing is also used to support loading over a large area, such as a storage 

tank. 

 

2. Bearing Capacity of Spread Footings 

 

The calculation of the maximum stress that can be applied onto a spread footing is 

based on an assumed failure mode of the soil under the footing. This maximum pressure 

that causes failure is called the bearing capacity of the soil. Although the bearing ca-

pacity is dependent on the type of soil property, such as shear strength characteristics, it 

also depends on other factors that are not related to the properties of the material, such 

as the size of the footing. Unlike the shear strength of a soil, bearing capacity is not a 

property of the material. 

 

2.1 Failure Modes of Spread Footings 

 

 

Figure 5. Various failure modes of a spread footing 
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In determining the bearing capacity for a footing, it is important to understand various 

modes of failure. There are basically three modes of failure of a spread footing: general, 

local and punching shear failures, see Figure 5. 

 

2.1.1 General Shear Failure 

 

General shear failure considers the failure of the soil under the footing which extends all 

the way to the ground surface. The failure zone can be divided into three regions: the 

rigid region directly beneath the footing, continuous shear region that rotates upward, 

and rigid shear region which extends to the ground surface. This is the most common 

mode of failure used in the analysis of a footing, see Figure 6.  

 

 
 

Figure 6. Theoretical failure zone under a spread footing 

 

2.1.2 Local Shear Failure 

 

Local shear failure involves a failure zone that does not extend to the ground surface, 

see Figure 5. The footing is either too deep below the ground surface or the soil is so 

compressible that it prevents the development of a complete failure surface that extends 

to the ground surface. 

 

2.1.3 Punching Shear Failure 

 

Punching shear failure occurs in a very compressible soil, such as peat. Shear surfaces 

cannot be developed due to the high compressibility of the material. The soil beneath 

the footing simply compresses and cannot sustain the load. 

 

2.2 Ultimate Bearing Capacity Formula 

 

In deriving the bearing capacity for a footing, the general shear failure mode is usually 

assumed. It is noted that this failure mode is not necessarily the actual failure mode of 

the footing, but the equation that it produces based on limit theorems gives the exact 

theoretical failure load. In other words, given the material parameters and failure mode, 

the equation gives the theoretical exact failure load that will cause failure of the footing. 

 

Based on plasticity analysis and limit theorems, Terzaghi determined the following 

equation to calculate the maximum pressure that causes failure of strip footings: 

 
1

2u c qq CN qN BN        (1) 
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where cN , qN  and N   are the bearing capacity factors, 

uq  = ultimate bearing capacity of the footing; 

C = cohesion of the soil; 

q = surcharge at the base of the footing; 

  = unit weight of the soil, and; 

B = width of the footing. 

 

The bearing capacity factors cN , qN  and N   are given in Table 1. It is noted that the 

ultimate bearing capacity of the footing depends on the width B of the footing. That is 

why the bearing capacity is not a property of the soil. 

 

  cN  qN
 

N   
  cN  qN

 
N   

10 8.3 2.5 0.4 31 32.7 20.6 17.7 

11 8.8 2.7 0.5 32 35.5 23.2 20.8 

12 9.3 3.0 0.6 33 38.6 26.1 24.4 

13 9.8 3.3 0.8 34 42.2 29.4 28.8 

14 10.4 3.6 1.0 35 46.1 33.3 33.9 

15 11.0 3.9 1.2 36 50.6 37.8 40.1 

15 11.6 4.3 1.4 37 55.6 42.9 47.4 

17 12.3 4.8 1.7 38 61.4 48.9 56.2 

18 13.1 5.3 2.1 39 67.9 56.0 66.8 

19 13.9 5.8 2.5 40 75.3 64.2 79.5 

20 14.8 6.4 2.9 41 83.9 73.9 95.1 

21 15.8 7.1 3.5 42 93.7 85.4 114.0 

22 16.9 7.8 4.1 43 105.1 99.0 137.1 

23 18.0 8.7 4.9 44 118.4 115.3 165.6 

24 19.3 9.6 5.7 45 133.9 134.9 200.8 

25 20.7 10.7 6.8 46 152.1 158.5 244.6 

26 22.3 11.9 7.9 47 173.6 187.2 299.5 

27 23.9 13.2 9.3 48 199.3 222.3 368.7 

28 25.8 14.7 10.9 49 229.9 265.5 456.4 

29 27.9 16.4 12.8 50 266.9 319.1 568.6 

30 30.1 18.4 15.1     

 

Table 1. Bearing Capacity Coefficients 

 

The three terms on the right side of Eq. (1) represent the contribution of three compo-

nents to the ultimate bearing capacity of the footing. The first term represents the con-

tribution of the soil cohesion to the resistance due to shearing along the shear (or slip) 

surfaces as shown in Figure 6. Therefore, for a cohesionless material, such as sand, this 

term is zero. 

 

The second term represents the contribution to the resistance from the surface loading 

above the base of the footing. If the footing is located at the ground surface and there is 

no loading besides the footing, this term is zero. In some cases, the footing is located 
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below the ground surface but this term is zero because failure of the footing does not 

involve failing of the material above the base, such as the case for the interior footing of 

a basement. 

 

If the footing is buried into the ground, the surcharge can be determined based on the 

unit weight and depth of the material, i.e., q D , where D  is the depth of the footing 

and   is the unit weight of the surcharge, see Figure 6. 

The third term represents contribution from the friction of the material. The bearing 

capacity factor N is dependent on the friction of the soil. The amount of resistance de-

pends on the size of the failure zone and therefore, this term depends on the width of the 

footing. 

- 

- 

- 
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