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Summary 

 

This chapter presents a brief overview of the analytical modeling techniques used in the 

nonlinear dynamic analysis of base isolated structures. The localized nonlinearities at 

the base allow condensation of the linear superstructure to a small number of master 

degrees of freedom. All the nonlinear bearings and devices are explicitly modeled. 

Mechanical properties of isolation bearings are described in detail. Material, friction, 

geometric and contact nonlinearities in the isolation system are discussed. Analytical 

models used for characterizing the behavior of isolation bearings and devices are 

presented. Formulation of the combined linear superstructure and nonlinear isolation 
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system and solution procedure is presented. Computer programs that are most popularly 

used are described briefly.  

 

1. Introduction 

 

Base isolation involves the introduction of isolation bearings and energy dissipating 

devices between the superstructure and its foundation. The laterally flexible isolation 

system shifts the fundamental period—considering an equivalent linear isolation 

system—of the structure beyond its fixed base period and the predominant periods of 

the ground motion. The period lengthening to typically 2 to 4 sec is sufficient to reflect 

the earthquake energy. Energy dissipation in the isolation system is then useful in 

limiting the displacement response. The isolation bearings generally exhibit material 

nonlinearities and under certain conditions may also exhibit geometric nonlinearities. 

However, these nonlinearities are restricted to the isolation system. The superstructure 

is typically designed to exhibit elastic behavior.  

 

2. Base Isolation Systems 

 

Base isolation systems have gained wide acceptance (Buckle and Mayes 1990, Kelly 

1997; Skinner et al. 1993; Soong and Constantinou 1994). The isolation bearings are 

typically connected between columns and foundation as shown in Figure 1. The 

isolation system is designed to be very stiff in the vertical direction. The isolation 

system is designed to provide adequate initial stiffness under service loads, such as wind 

load, and to provide greater flexibility past yielding of the isolation bearings under 

strong ground motion or seismic loads.  

 

 
 

Figure 1. Isolation system details including elastomeric bearing and damper 

 

There are two basic types of isolation bearings: elastomeric bearings and sliding 

bearings. Elastomeric bearings consist of laminated rubber layers and steel shim plates. 

Two types of elastomeric bearings that have been implemented in structures are the high 
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damping rubber bearing and the lead rubber bearing. In both types the laminated rubber 

provides the lateral flexibility. The isolation system level displacements increase due to 

the lateral flexibility. Adding energy dissipation capacity reduces the isolation system 

displacements. The energy dissipation capacity is provided by the inherent damping 

capacity of the rubber in high damping bearings. In lead-rubber bearings, which are 

typically manufactured with low damping rubber, the cylindrical lead plug within the 

rubber unit provides the energy dissipation capacity. Moreover, supplemental energy 

dissipating devices, primarily in the form of fluid viscous dampers, have been used in 

isolation systems to substantially enhance damping in applications in areas of very high 

seismicity.  

 

Sliding bearings consist of Teflon or similar materials sliding on a stainless steel 

surface. Two types of sliding bearings that have been implemented in structures are the 

Friction Pendulum Sliding (FPS) bearings, spherically shaped sliding bearings, and the 

flat sliding bearings. Sliding bearings dissipate energy due to friction. Restoring force is 

provided by the spherical sliding surface in the FPS system or by added springs in the 

system with flat sliding bearings. 

 

3. Material/Friction Nonlinearities of Base Isolation Bearings and Devices 

 

3.1. Elastomeric Bearings  

 

Elastomeric bearings are typically made of natural rubber and are classified into low 

damping and high damping bearings. The low damping bearings exhibit shear stiffness 

which is effectively linear to large shear strains (>100%). The damping is in the range 

of 2 to 5 % of critical. Lead-rubber bearings are made up of low damping natural rubber 

with a lead core. The lead core is provided to increase the energy dissipation capacity to 

about 20 to 30% of critical. The idealized force displacement behavior of a lead-rubber 

bearing can be characterized as bilinear hysteretic as shown in Figure 2. The high initial 

stiffness offers rigidity under wind load and low level seismic load. The characteristic 

strength, p YLQ A  , where pA  is the lead plug area and YL  is the effective shear 

yield stress of lead. The post yielding stiffness, pK , is typically higher than the shear 

stiffness of the bearing without the lead core: 

 

r
p

A G
K f

t



, (1) 

 

where rA  is the bonded rubber area, t  is the total rubber thickness, G  is the shear 

modulus of rubber, and f  is a factor larger than unity. Under proper conditions, f , 

may be equal to or less than 1.15. Moreover, the initial elastic stiffness, eK , ranges 

between 6.5 to 10 times the post-yielding stiffness. 
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Figure 2. Lead rubber bearing: bilinear force-displacement loop 

 

The stiffness and energy dissipation characteristics of high damping bearings are highly 

nonlinear and dependent on shear strain as shown in Figure 3. The high damping 

bearings are made up of specially compounded rubber, which provides effective 

damping of 10 to 15 % of critical. The high damping bearings have high shear stiffness 

at low shear strains (< 20%) for rigidity under wind load and low level seismic load. 

The shear stiffness is typically lower in the range of 20 to 120 % shear strains. At large 

shear strains, the shear stiffness increases due to strain crystallization process in the 

rubber. The damping in high damping bearings is best characterized by a combination 

of hysteretic and viscous behavior. In the virgin stage and during the first cycle of 

movement, the bearings exhibit higher stiffness and damping than in the following 

cycles. The stiffness stabilizes by the third cycle, resulting in stable properties termed as 

scragged properties. Scragging of the bearings is the result of internal changes in the 

rubber. Recovery to the unscragged (virgin) properties occurs following sufficient time. 

The scragged state of the bearings can be modeled by a bilinear hysteretic model for 

shear strains of up to 200%. The stiffening behavior (see Figure 3) beyond this strain 

can also be modeled using more complex models (Constantinou et al. 2007, Tsopelas et 

al. 1994, Kikuchi and Aiken 1997). The current technique used to model high damping 

bearings is to perform multiple analyses with bilinear hysteretic models; the parameters 

of the bilinear hysteretic models are determined at specific shear strain amplitudes. The 

bilinear model parameters can be established from test data of prototype bearings. These 

properties are the shear modulus, G , and the equivalent damping ratio,   (defined as 

the energy dissipated in a cycle of motion divided by 4  and by the maximum kinetic 

energy) under scragged conditions. G , is related to the post yielding stiffness pK  : 

 

r
p

GA
K

t
 


. (2) 

 

The parameters of the model may be determined by use of the mechanical properties of 

G  and   at a specific strain—for example, parameters corresponding to the design 

displacement. The post yielding stiffness, pK  , is determined from (2), whereas the 

characteristic strength, Q , may be related to the mechanical properties by assuming 

bilinear hysteretic behavior: 
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Figure 3. High damping bearing: force displacement loop with stiffening 

 

where the yield displacement, yD  , is between 0.05 and 0.1 times the total rubber 

thickness and D  is the design displacement. The yield force, yF  , is given by 

 

py yF Q K D  . (4) 

 

And the post to pre-yielding stiffness ratio is given by 

 

p y

y

K D

F



 . (5) 

 

Elastomeric bearings have finite vertical stiffness that affects the vertical response of the 

isolated structure. The vertical stiffness of an elastomeric bearing can be estimated as 

follows 

 

c r
v

E A
k

t



, (6) 

 

where cE  is the compression modulus. 

 

3.2. Sliding Bearings 

 

Two types of sliding bearings are the flat sliding bearings with restoring force devices 

and the friction pendulum bearings (FPS) shown in Figure 4. Flat sliding bearing is 

made up of Teflon sliding on a flat stainless steel surface. The re-centering capability is 

provided by additional elastic springs. The FPS bearing, shown in Figure 4, is made up 

of a composite material sliding on a spherical surface with radius of curvature R , which 

provides the re-centering force. The behavior of FPS bearing can be represented by 
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s sgn ( )
N

F U N U
R

  . (7) 

 

where F  is the force in the bearing,U andU are the displacement and velocity, 

respectively, s is the coefficient of sliding friction (dependent on velocity and 

pressure) and N  is the normal load on the bearing. It should be noted that for flat 

sliding bearings R  is infinite. The coefficient of friction of sliding bearings depends on 

a number of parameters of which the composition of the sliding interface, bearing 

pressure and velocity of sliding (as shown in Figure 5) are the most important. For 

interfaces consisting of polished stainless steel in contact with Teflon or composites the 

coefficient of friction may be described by (Constantinou et al. 1990) 

 

 
 

Figure 4. Friction pendulum bearing: force-displacement loop (includes friction and re-

centering force) 

 

 s max max min( )expf f f a U     , (8) 

 

where the parameters minf  and maxf  describe, respectively, the coefficients of friction 

at essentially zero and large velocities of sliding and under constant pressure. 

Parameters minf , maxf  and a  depend on the bearing pressure, although only the 

dependency of maxf  on pressure is of practical significance.  

 
 

Figure 5. Variation of friction coefficient as a function of sliding velocity and pressure 
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More recently Fenz and Constantinou (2008), Morgan and Mahin (2011), Ray and 

Reinhorn (2012) and Dao et al. (2013) have studied the triple friction pendulum 

isolation bearing that has an inner slider and articulated sliders sliding inside concave 

sliding surfaces as shown in Figure 6, and developed detailed analytical models with 

force-displacement behavior as shown in Figure 7.  

 

 
 

Figure 6. Triple Friction Pendulum Isolator 

 

 
 

Figure 7. Force (f) - Displacement (u) Behavior of Triple Friction Pendulum Isolator 

 

3.3. Fluid Viscous Dampers 

 

Fluid dampers (Constantinou 1993) are used to enhance the damping in the isolation 

system and are connected between the base and foundation as previously shown in 

Figure 1. Fluid viscous dampers produce force by forcing fluid (typically silicone oil) 
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through orifice passages as shown in Figure 8. It is possible to shape the orifice 

passages (Constantinou 1993) in such a way as to produce an output force of the type 

 

sgn( )F C U U


 , (9) 

 

where C  = damping coefficient,   is in the range of 0.5 to 1.0 and the representative 

force-displacement loops are shown in Figure 8.  

 

 
 

Figure 8. Fluid Damper: force displacement loop (Velocity Dependent Damping Force) 
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