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Summary 
 
In this chapter we review the fundamentals and the formulation of some simple material 
constitutive models both for fluids and solids. First, a short review of the main concepts 
and definitions of Continuum Mechanics is presented, including kinematics and balance 
principles, in order to make this chapter auto-comprehensive and to fix the terminology 
and notation. Next, we include the fundamental principles of constitutive models, from 
a general perspective and without entering in details that have been presented elsewhere 
in this book, but sufficient to recall the concepts needed in the following sections. Then, 
we enter in the core of the chapter, discussing the fundamentals of elastic and 
hyperelastic materials, with especial emphasis in those with fibered microstructure, as 
well as plastic and viscoplastic solids, viscoelastic liquids and solids and, finally, of 
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damage-based constitutive models. For a better understanding, in some cases, we have 
added some illustrating examples and the computational aspects related. 
 
As it is easy to understand, this cannot be a book on rheology, that would need a much 
longer space, but only an introduction to the main families of constitutive models for 
engineering materials. In any case, we have tried to be not too restrictive, so fully non-
linear kinematics has been assumed in all cases. A much more detailed presentation may 
be found in the many references included in the chapter.  
 
1. Basic Results in Continuum Mechanics  
 
Below we summarize some basic results of nonlinear continuum mechanics relevant to 
our subsequent developments. For further details we refer to [11] [31] [32] or [25].  
 
1.1. Kinematics  
 
Let 3⊂B  denote the reference configuration of a continuum body defined as a set of 
points located by their respective co-ordinates with respect to a fixed but otherwise 
arbitrary reference frame { }X  at time 0t = , and with its particles labeled as X∈B . For 

our purposes, it suffices to regard B  as an open bounded set in 3 . A smooth 
deformation is a continuously differentiable one to one mapping (as well as its inverse): 
 

3:χ → ⊂B S  (1) 
 
which puts into correspondence 3⊂B  with some region 3⊂S , the deformed 
configuration, in the Euclidean space (see Figure 1). A motion is a one-parameter 
family of deformations, χ t , parameterized by time, such as, for a fixed time t , (1) 
represents a deformation mapping between the undeformed and deformed bodies. On 
the contrary, for a fixed particle X , (1) gives the trajectory of this particle as a function 
of time. 

 
Figure 1. Motion of a deformable body. 
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In a deformable body, those properties which change along with the deformation of the 
body might be described either by the evolution of its value along the trajectory of a 
given material point, material description (also known as Lagrangian description), or 
by the change of its value at a fixed location in space occupied by (different for each 
time instant) particles of the body, spatial (Eulerian) description. 
 
The deformation gradient is the derivative of the deformation mapping χ . We use the 
notation (From now on, all the newly defined functions that depend on the motion also 
depend on time. However, the reference to t  will be systematically dropped, except 
when needed, making such dependence implicit for not complicating the notation.) 
 

( ) ( ) 3

, 1
X

χ X
X χ e E

X iI i I
i I

F F
=

∂
= ∇ = = ⊗

∂ ∑ . (2) 

 
The deformation gradient transforms vectors in the reference configuration to vectors in 
the current configuration, thus describing the change in the relative position of two 
material particles (or the vector that joins them), and is therefore a two-point tensor, 
 

.x F Xd d=  (3) 
 
Similarly, by using the inverse of the deformation gradient, 1F− , material vectors can be 
written in terms of the corresponding spatial vector as 
 

1 .X F xd d−=  (4) 
 
Expressions (3) and (4) are usually referred as push-forward and pull-back operations of 
the corresponding vectors, and are expressed, respectively, as x χ Xd d= , and 

1X χ xd d−= . 
 
By using (3), the infinitesimal volume in the current configuration is given as 
 

( ) ( )1 2 3 1 2 3 ,x x x X X Xdv d d d JdV Jd d d= ⋅ × = = ⋅ ×  (5) 
 
with det FJ = , the Jacobian of the deformation, such that the local condition of 
impenetrability of matter requires that the local volume ratio 
 
( ) ( ): det 0.X F XJ = >⎡ ⎤⎣ ⎦  (6) 

 
This result allows expressing the conservation of mass as follows 
 

( ) ( ) ( )0 0 .X X Xdm dv JdV dV Jρ ρ ρ ρ ρ= = = ⇒ =  (7) 
 
with ρ  the current density and 0ρ  the initial density. 
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Let us consider now an area element in the material configuration, S Nd dS= , and an 
arbitrary material vector L not orthogonal to N . After deformation, these elements 
become s snd d= , and l FL= . Therefore we can write 
 

,Ts l s FL F s Ldv d d d= ⋅ = ⋅ = ⋅  (8) 
 

S LdV d= ⋅ . (9) 
 
Using (5) we finally get 
 

Ts F Sd J d−= , (10) 
 
known as Nanson’s formula. 
 
Let us now consider the change in the inner product of two material vectors 1Xd  and 

2Xd  as they deform through the motion. Using (3), we have 
 

1 2 1 2 1 2 ,Tx x X F F X X C Xd d d d d d⋅ = ⋅ ⋅ = ⋅ ⋅  (11) 
 
where TC F F=  is the right Cauchy-Green deformation tensor (Note that C only 
operates on material quantities, and is therefore a material tensor.). Similarly, the inner 
product of two material vectors can be expressed as 
 

1 1
1 2 1 2 1 2 ,TX X x F F x x b xd d d d d d− − −⋅ = ⋅ ⋅ = ⋅ ⋅  (12) 

 
where Tb FF=  is the left Cauchy-Green or Finger tensor (In this case, b only operates 
on spatial quantities and consequently is a spatial tensor.). 
 
Alternative definitions of strain can be found in terms of the difference in the scalar 
product of vectors 1Xd  and 2Xd  in the spatial and material configurations, 
 

( )1 2 1 2 1 2
1 ,
2

x x X X X E Xd d d d d d⋅ − ⋅ = ⋅ ⋅  (13) 

 
where, 
 

( )1
2

E C I= −  (14) 

 
is the Lagrange strain tensor and I is the second order unit tensor in the initial 
configuration such as I X Xd d= . Alternatively, the Almansi strain tensor is obtained as 
 

( )1 2 1 2 1 2
1 ,
2

x x X X x e xd d d d d d⋅ − ⋅ = ⋅ ⋅  (15) 
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with 
 

( )11 .
2

e 1 b−= −  (16) 

 
being 1 the second order unit tensor in the current configuration. 
 
From (13) and (15) we get 
 

1 2 1 2 ,x e x X E Xd d d d⋅ = ⋅  (17) 
 
so that the push-forward and pull-back operations of these strain measures become: 
 

1 ,Te F EF χ E− −= =  (18) 
 

1 .TE F eF χ e−= =  (19) 
 
When working with incompressible or nearly incompressible materials, it is sometimes 
useful to consider the multiplicative split of F into dilatational and distortional 
(isochoric) parts. This decomposition reads 
 

1 3F FJ= . (20) 
 
From this, it is now possible to define the isochoric counterparts C  and b  of the right 
and left Cauchy-Green deformation tensors (Note that ( )det 1F = .) 

 
2 3

2 3

, ,
, .

T

T T

C F F C C F F
b FF b b FF

TJ
J

= = =

= = =
 (21) 

 
According to the polar decomposition theorem [31][32], we recall that the deformation 
gradient at any point X∈B  can be decomposed as 
 
( ) ( ) ( ) ( ) ( ) ,F X R X U X V χ X R X= = ⎡ ⎤⎣ ⎦  (22) 

 
where ( )R X  is a proper orthogonal tensor ( )TR R I= , called the rotation tensor, and 

( ) ( ),U X V χ X⎡ ⎤⎣ ⎦  are symmetric positive-definite tensors called the right and left 
stretch tensors, respectively, and defined as: 
 

,T TC U U b VV= = , (23) 
 
It is immediate to demonstrate that with the definitions (22)(23), R is an orthogonal 
tensor. 
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( )1 1 1 ,T T T T T TR R U F FU U CU U U U U I− − − − − −= = = =  (24) 
 
and similarly for the left version of the stretch tensor. 
 
Let now ( ), 1, 2,3AI A =  be the principal invariants of C (or ofb ), defined as 
 
( ) [ ]

( ) [ ]( )
( ) [ ] [ ]( )

1

21 2
2

3 2 3
3

: : ,
1: det ,
2

1: det 3 2 .
6

C tr C C 1

C trC C tr C tr C

C C tr C tr C tr C tr C

I

I

I

−

= =

⎡ ⎤= = − ⎣ ⎦

⎡ ⎤ ⎡ ⎤= = − +⎣ ⎦ ⎣ ⎦

 (25) 

 
Since C  is symmetric and positive-definite, by the spectral theorem [31], we can write 
 

( ) ( ) ( )
3

2

1
, 1,C N N NA A A

A
A
λ

=

= ⊗ =∑  (26) 

 
where 2 0Aλ >  are the eigenvalues of C , solutions of the characteristic polynomial 
equation: 
 
( )2 6 4 2

1 2 3 0,p I I Iλ λ λ λ= − + − =  (27) 
 
and ( )N A  are the associated principal directions fulfilling: 
 

( ) ( ) ( )2 , 1, 2,3 .CN NA A
A Aλ= =  (28) 

 
In (28), ,Aλ  (A = 1, 2, 3), are the principal stretches along the principal directions ( )N A . 

The push-forward of the principal directions, ( )N A , is written as 
 

( ) ( ) ( ) ( ), 1.χ N FN n nA A A A
Aλ= = =  (29) 

 
The vectors in the triad ( ) ( ) ( ){ }1 2 3, ,n n n  are called the Eulerian principal directions at 

( )x χ X= ∈S , so that the spectral decomposition of F takes the form 
 

( ) ( )
3

1
.F n NA A

A
A
λ

=

= ⊗∑  (30) 

 
From (23) and (28), the spectral decompositions of the right and left stretch tensors are 
given by  
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3
( ) ( )

1
,U N NA A

A
A

λ
=

= ⊗∑  (31) 

 
3

( ) ( )

1
,V n nA A

A
A

λ
=

= ⊗∑  (32) 

 
respectively, while the spectral decomposition of the rotation tensor takes the form  
 

3
( ) ( )

1
.R n NA A

A=
= ⊗∑  (33) 

 
The material velocity, denoted by ( , )V X t , is the time derivative of the motion (Do not 
confuse the material velocity with the left stretch tensor; the context will make clear the 
particular object considered) :  
 

( , )( , ) .χ XV X tt
t

∂
=

∂
 (34) 

 
Similarly, the material acceleration is defined as the time derivative of the material 
velocity: 
 

2

2

( , ) ( , )( , ) .V X χ XA X t tt
t t

∂ ∂
= =

∂ ∂
 (35) 

 
The spatial or Eulerian description can be obtained from the material description by 
changing the independent variables from material to spatial coordinates of a particle. 
Accordingly, at any time [0 ]t T∈ , , one defines the spatial velocity and acceleration 
fields, denoted by ( , )v x t  and ( , )a x t , respectively, by the change of variable formula 

( , )x χ X t= :  
 

( ( , ), )) ( , ), ( ( , ), )) ( , ),v χ X V X a χ X A Xt t t t t t= =  (36) 
 
or, in compact form,  
 

1 1, and ,v V χ a A χ− −= =  (37) 
 

and ,V v χ A a χ= =  (38) 
 
where “ο ” denotes composition (Observe that (38)/(37) are not the push-forward/pull-
back operations on the velocity and acceleration, but only the change of variable of 
those functions associated to the motion) 
 
The material time derivative of a spatial object, such as the spatial velocity, function of 
the variables 3( , ) [0, ]x t T∈ ⊂ ×S , is the time derivative holding the particle (not its 
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current position) fixed. For example, for the spatial velocity, we denote its material time 
derivative by ( , )v x t . Then, by definition,  
 

[ ]{ }( , )( , ) | : ( , ), | ( , ) | ( , ).x χ X X Fixed X Fixedv x v χ X V X A Xtt t t t t
t t= = =
∂ ∂

= = =
∂ ∂

 (39) 

 
Therefore, by definition of spatial acceleration,  
 

1 ( )
( , ) ( , ) | ( , ),

X χ x
v x A X a xt t t−=

= =  (40) 

 
i.e., the material time derivative of the spatial velocity field is the spatial acceleration. In 
general, if ( , )σ x t  is a spatial tensor field, by definition, its material time derivative, 
denoted by ( , )σ x t , is obtained by the formula  
 

1: ( ) x
σσ σ χ χ v σ

t t
−∂ ∂⎡ ⎤= = + ⋅∇⎢ ⎥∂ ∂⎣ ⎦

 (41) 

 
while ( , )X tt ∂Σ

∂Σ = .  
 
Some additional important material derivatives are the following:  
 

[ ] ,X X X
F χF χ V L
t t t

∂ ∂ ∂⎛ ⎞= = ∇ = ∇ = ∇ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (42) 

 
where V  is the material velocity field given by (34), and XV∇  is called the material 
velocity gradient. By the chain rule,  
 

[ ] .X X x X xV v χ v χ vF lF∇ =∇ = ∇ ∇ =∇ =  (43) 
 
Combining (42) and (43), we arrive at the following expression for the spatial velocity 
gradient xl v= ∇ :  
 

1 1 1.x
Fl v F LF FF
t

− − −∂
= ∇ = = =

∂
 (44) 

 
The symmetric part of xv∇ , denoted by d , is called the spatial rate of deformation 
tensor, and its skew-symmetric part is called the spin or vorticity tensor, denoted by w . 
Thus  
 

1 1[ ] ( ),
2 2

T T
x xd v v l l= ∇ +∇ = +  (45)  

1 1 ( )
2 2

T T
x xw v v l l⎡ ⎤= ∇ −∇ = − ,⎣ ⎦  (46) 
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with  
 

xl v d w= ∇ = + .  (47) 
 
The following relationship is also useful:  
 

1 1 1 [( ) ]
2 2 2

T T T T T
x xD E C F F F F F v v F F dF⎡ ⎤= = = + = ∇ +∇ = .⎣ ⎦  (48) 

 
Expression (48) justifies the name material rate of the deformation tensor given to D , 
since d χ D= , 1D χ d−= .  
 
In addition, introducing (18) and (19) into (48) leads to  
 

1( ) [ ]χd χ χ e e
t

−∂⎛ ⎞= = .⎜ ⎟∂⎝ ⎠
L  (49) 

 
Hence, the rate of deformation tensor is the push-forward of the time derivative of the 
pull-back of the Almansi tensor. This operation is known as the Lie derivative of a 
tensor over the mapping χ  and it will be used in the following sections, being 
immediate that d  is the Lie derivative of the Almansi tensor e .  
 
- 
- 
- 
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