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Summary 
 
This chapter is concerned mainly with the basic problems of the linear theory of 
thermoelasticity. Beginning with the basic laws of thermodynamics, there follows a 
treatment of the constitutive equations and the derivation of the equations of nonlinear 
thermoelasticity. The next part of this work is devoted to the linear 
thermoelastodynamics. First, some basic theorems are established. Then, an 
investigation of thermoelastic waves is presented. The work concludes with a study of 
the theory of thermoelastic equilibrium. Relevant examples which illustrate the theory 
are given throughout the text. 
 
1. Introduction 
 
The theory of thermoelasticity is concerned with the interaction between thermal field 
and the elastic bodies. The study of thermoelasticity was begun by Duhamel (1837) and 
Neumann (1885) who postulated the equations of the linear thermoelasticity for 
isotropic bodies. These equations have been justified by Biot (1956) on the basis of 
irreversible thermodynamics. A derivation founded on modern continuum 
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thermodynamics has been given by Eringen (1967). The theory of thermoelasticity is of 
great importance. The published work in thermoelasticity is so large that it is not 
possible to do justice to all contributors by mere mention of their names. An account of 
the historical development, as well as references to various contributions, may be found 
in the monographs by Green and Adkins (1960), Boley and Weiner (1960), Truesdell 
and Toupin (1960), Nowacki (1962), Carlson (1972), Day (1985), Ieşan and Scalia 
(1996).  
 
In this work we present a short account of the linear theory of thermoelasticity. The 
exposition of nonlinear thermoelasticity is presented to provide a base for the linear 
theory. The reader interested in the nonlinear thermoelasticity is referred to the books by 
Racke and Jiang (2000) and Ieşan and Scalia (1996). 
 
The present work consists of three main parts. In the first part (Sections 2-5) we focus 
attention to the derivation of the equations of thermoelasticity. The second part of this 
article (Sections 6-10) contains a study of the dynamic theory of thermoelasticity. In the 
last part we investigate some problems of the theory of thermoelastostatics.  
 
To review the vast literature on applications and special problems is not our intention; 
considerations of space and time have caused extensive selection to be made. The 
illustrations included are examples considered relevant to the purpose of the text.  
 
The assumptions of zero initial stress and uniform reference temperature are crucial to 
the development of the classical linear thermoelasticity. Thermoelasticity of bodies with 
initial stresses and non-uniform reference temperature is not considered here. The reader 
interested in these subjects will find a full account in the works of Knops and Wilkes 
(1973) and Ieşan and Scalia (1996).  
 
In recent years there has been some interest in thermoelasticity of polar materials and 
the theories of thermoelasticity with finite wave speeds. For an extensive review of the 
literature on these theories the reader is referred to the monographs by Nowacki (1986), 
Chandrasekharaiah (1986), Eringen (1990), Jou et al. (1996), Müller and Ruggeri 
(1998), Ieşan (2004). We make no claim to completeness. It is hoped that the present 
work gives an accessible treatment of a part of the contributions that have been made to 
the subject.  
 
2. Preliminaries 
 
In what follows we consider a body that at time 0t  occupies the region B  of Euclidean 

three-dimensional space 3E . We assume, unless specified otherwise, that B  is a 
bounded regular region.  
 
The configuration of the body at time 0t  is taken as the reference configuration. The 
motion of the body is referred to the reference configuration and a fixed system of 
rectangular Cartesian axes. We identify a typical particle x  of the body with its position 
x  in the reference configuration. The coordinates of a typical particle x  in B  are 
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( 1 2 3)jx j = , , . The coordinates of this particle in the position y  at time t  are denoted 

by iy . We have  

( ) ( )t t B I= , , , ∈ × ,y y x x        (1) 
 
where 0 1( )I t t= ,  is a given interval of time. We assume continuous differentiability of 

y  with respect to the variables ix  and t  as many times as required and  
 

det 0 oni

j

y
B I

x

⎛ ⎞∂
> × .⎜ ⎟⎜ ⎟∂⎝ ⎠

       (2) 

 
The configuration of the body at the time t  is denoted by B′  and is called present 
configuration. We shall employ the usual summation and differentiation conventions: 
Latin subscripts (unless otherwise specified) are understood to range over the integers 
(1,2,3) whereas Greek subscripts are confined to the range (1,2), summation over 
repeated subscripts is implied and subscripts preceded by a comma denote partial 
differentiation with respect to the corresponding Cartesian coordinate. In what follows, 
a superposed dot denotes the material derivative with respect to the time. Letter in 
boldface stand for tensors of an order 1p ≥ ,  and if v  has the order p , we write ij…kv  

( p  subscripts) for the rectangular Cartesian components of v . We say that f  is of 

class M NC ,  on 0 1( )B t t× ,  if f  is continuous on 0 1( )B t t× ,  and the functions 
m n

n
i j k

f
x x … x t

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

, {0 1 } {0 1 }m … M n … N∈ , , , , ∈ , , , , max( )m n M N+ ≤ , , 

exist and are continuous on 0 1( )B t t× , . We write NC  for N NC , .  
 
The local form of the conservation law of linear momentum can be expressed as  
 

0 0 0 1on ( )ji j i iT f B t tyρ ρ, + = × , ,      (3) 

 
where jiT  is the first Piola-Kirchhoff stress tensor, 0ρ  is the mass density at time 0t  

and if  is the body force per unit mass.  
 
If we define the second Piola-Kirchhoff stress tensor ijS  by  

 

ki i j kjT y S,= ,          (4) 

 
then the local form of the conservation law of moment of momentum reduces to  
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ij jiS S= .          (5) 

 
We denote by ijE  the Lagrangian strain tensor,  

0 1
1 ( ) on ( )
2ij k i k j ijE y y B t tδ, ,= − × , ,      (6) 

 
where ijδ  is Kronecker’s delta.  

 
The local form of the first law of thermodynamics can be written as  
 

0 0 0 1on ( )ijij j je S S Q B t tEρ ρ ,= + + × , ,     (7) 

 
where e  is the internal energy per unit mass, S  is the heat supply per unit mass, and 

jQ  is the heat flux associated with surfaces in B′  which were originally coordinate 

planes perpendicular to the jx -axes through the point x , measured per unit 

undeformed area.  
 
We assume that if  and S  are continuous on 0 1( )B t t× , , ijT  and jQ  are of class 1 0C ,  

on 0 1( )B t t× ,  and continuous on 0 1[ )B t t× , .   
 
Let  P   be a region of the continuum bounded by a surface ∂P    at time t , and 
suppose that P  is the corresponding region at time 0t , bounded by the surface P∂ .  We 

denote by in  the components of the outward unit normal at P∂ . Let t  be the stress 
vector associated with the surface ∂P , but measured per unit area of the surface P∂ , 
and let q  be the heat flux across the surface ∂P , measured per unit area of P∂ .  Then, 
we have  
 

i ji j j jt T n q Q n= , = .        (8) 

 
We denote by T  the absolute temperature, which is assumed to be positive. Let η  be 

the entropy per unit mass. We assume that η  is of class 0 1C ,  and T  is of class 2 1C ,  on 

0 1( )B t t× , . The local form of the second law of thermodynamics can be expressed as  
 

0 0
1 0j j j jT S Q Q T
T

ρ η ρ , ,− − + ≥ .      (9) 

 
If we introduce the Helmholtz free-energy,  
 

e Tψ η= − ,          (10) 
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then the equation of energy can be written in the form  
 

0 0( ) ijij j jT T S Q SEρ ψ η η ρ,+ + = + + .     (11) 

 
From (9) and (11) we obtain the following local dissipation inequality  
 

0
1( ) 0ijij j jS T Q TE T

ρ ψ η ,− + + ≥ .      (12) 

 
3. Constitutive Equations 
 
A thermoelastic material is defined as one for which the following constitutive 
equations hold  
 

ˆ ( )

ˆ ( )

ˆ( )
ˆ ( )

mn k r

ij mn k rij

mn k r

i mn k ri

E T T x

S E T T xS
E T T x

Q E T T xQ

ψ ψ

η η

,

,

,

,

= , , , ,

= , , , ,

= , , , ,

= , , , .

       (13) 

 
We suppose that the functions ˆ ˆˆ ijSψ η, ,  and ˆ

iQ  are of class 1C  on their domain. In the 

case of homogeneous bodies the constitutive functions do not depend on rx . Clearly, 
the constitutive equations (13) satisfy the principle of material frame-indifference.  
 
Let us study the restrictions placed on the constitutive functions by the second law. We 
introduce the notation  
 

0σ ρ ψ= .          (14) 
 
In view of (13), the inequality (12) becomes  
 

0
1 0ij jij j j

ij j
S T Q TE TE T T T

σ σ σρ η , ,
,

⎛ ⎞∂ ∂ ∂⎛ ⎞− − + − + ≥ .⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
  (15) 

 
We assume that σ  in (15) is arranged as a symmetric function of ijE . For a given 

deformation and temperature, the inequality (15) is valid for all arbitrary values of 
,ijE T  and , jT , subject to ij jiE E= . Thus, in absence of internal constraints, from 

(15) we obtain (see Coleman and Mizel (1964), Carlson (1972))  
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0 0ij
ij j

S
E T T
σ σ σρ η

,

∂ ∂ ∂
= , = − , = ,
∂ ∂ ∂

 

and  
 

0j jQ T, ≥ .          (16) 

 
We conclude that the constitutive equations of thermoelastic bodies are given by  
 

0

( )

( )

ij k

ij
ij

p ij k mp

E T x

S
E T

Q E T T xQ

σ σ

σ σρ η

,

= , , ,

∂ ∂
= , = − ,
∂ ∂

= , , , .

       (17) 

 
In view of (17), the energy equation (11) takes the form  
 

0 0 0 1on ( )j jT Q S B t tρ η ρ,= + × , .      (18) 

 
The next result is a consequence of inequality (16).  
 
Theorem 3.1. The heat flux vanishes whenever the temperature gradient vanishes,  
 

( 0 ) 0mn ki E T xQ , , , = .        (19) 

 
Proof. Let us consider the function 1 2 3 1 2 3ˆ( ) ( )i mn kif E T xQξ ξ ξ ξ ξ ξ ξ, , = , , , , , , where 

mnE T,  and kx  are fixed. The inequality (16) shows that f  is nonnegative. Since 
(0 0 0) 0f , , = , the function f  has an extremum at (0 0 0), , . If we impose that 

0kf ξ∂ / ∂ =  at (0 0 0), , , then we obtain the desired result.□ 
 
This theorem has been established by Pipkin and Rivlin (1958).  
 
4. Equations of the Nonlinear Thermoelasticity 
 
The basic equations of the nonlinear theory of thermoelasticity consist of equations of 
motion (3), the energy equation (18), the constitutive equations (17) and the geometrical 
equations (6), on 0 1( )B t t× , , where 1t  is some time instant that may be infinite. The 

functions 0 ifρ ,  and S , and the constitutive functionals σ̂  and ˆ
jQ  are prescribed. 

The response functionals ˆ
jQ  are subjected to the restriction (16). To the field equations 
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we must adjoin boundary conditions and initial conditions. In the case of the mixed 
boundary-value problem the boundary conditions are  
 

1 0 1 3 0 1

2 0 1 4 0 1

on ( ) on ( )
on ( ) on ( )

i i

ji j i i i

y S t t T T S t ty
T n t S t t Q n q S t t

= × , , = × , ,

= × , , = × , ,
   (20) 

 
where ( 1 2 3 4)iS i, = , , , , are sub-surfaces of B∂  such that 

1 2 3 4 1 2 3 4S S S S B S S S S∪ = ∪ = ∂ , ∩ = ∩ =∅ , and i iy T t, ,  and q  are 
prescribed functions. The initial conditions are  
 

0 0 0( 0) ( ) ( 0) ( ) ( 0) ( ) Bη η, = , , = , , = , ∈ ,y x y x y x v x x x x   (21) 
 
where 0 0,y v  and 0η  are given. We assume that 

(i) 0ρ  is continuous and strictly positive on B ; 

(ii) f  and S  are continuous on 0 1[ )B t t× , ; 

(iii) 0 0,y v  and 0η  are continuous on 0 1[ )B t t× , ; 

(iv) iy  are continuous on 1 0 1[ )S t t× ,  and T  is continuous on 3 0 1[ )S t t× , ; 

(v) it  are continuous in time and piecewise regular on 2 0 1[ )S t t× ,  and q  is 

continuous in time and piecewise regular on 4 0 1[ )S t t× , .  
 
The mixed problem of thermoelastodynamics consists in finding the functions iy  of 

class 2C  and T  of class 2 1C ,  on 0 1( )B t t× ,  that satisfy Eqs. (3), (18), (17) and (6) on 

0 1( )B t t× , , the boundary conditions (20) and the initial conditions (21).  
 
It is possible to set up more complicated boundary conditions than those considered 
here. In the case of the convection condition on the boundary, the thermal condition is  
 

e 0 1( ) on ( )j jQ n h T T B t t= − ∂ × , .      (22) 

 
Here eT  is the temperature of surrounding medium and h  is the heat transfer 
coefficient.  
 
The exposition of nonlinear thermoelasticity given here is presented to provide a base 
for the linear theory. The reader interested in the nonlinear thermoelasticity will find a 
full account in the books by Racke and Jiang (2000) and Ieşan and Scalia (1996).  
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