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Summary  
 
Since the beginning of the 1970’s the term soft matter has been established to describe 
the complex behavior of a large variety of materials that share some common features, 
mainly related to the nontrivial interaction between the micro- and the macroscopic 
degrees of freedom. Liquid crystals, colloids, polymers, granular materials and 
biological tissues are only a few among the many soft materials that challenge today’s 
research. 
 
It is the aim of the present chapter to review in some detail the properties of two soft 
materials of keen technological importance: nematic liquid crystals and nematic 
elastomers.  
 
1. The Liquid Crystalline Phase 
 
Liquid crystals are aggregates of molecules which interact to build up an ordered phase 
whose physical properties are intermediate between those of fluids and solids. In the 
liquid-crystalline phase, the molecules possess orientational order, though they do not 
exhibit complete positional order. In this chapter we will review the mathematical 
definition of such a phase, and the order parameters that characterize its physical 
properties. We will further present the variational theories that govern the equilibrium 
properties as hyperelastic continua. A section is devoted to the constitutive equations 
that portray liquid crystals as anisotropic viscoelastic continua. Finally, we analyze in 
some detail the equilibrium properties of nematic elastomers, and show how the soft 
elasticity modes arise as their mechanical fingerprints. 
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Director 
Many different chemical substances possess a liquid-crystalline phase. Their molecules 
may be quite different in shape, size, and composition, but they share the common 
property that their central ellipsoid of inertia is (sufficiently close to be) a spheroid, 
either sharply prolate (rod-like or calamitic liquid crystals), or sharply oblate (disk-like 
or discotic liquid crystals). In both cases, we may identify the molecular orientation by 
means of a unit vector n , called the director, parallel to the axis of rotational symmetry 
of the spheroid.  
 
In addition, most liquid crystal molecules possess an extra head-and-tail symmetry. This 
means that their physical properties are not altered if we perform a reflection with 
respect to the plane orthogonal to the director. The directors n  and −n  describe thus 
one and the same physical state. The reflection symmetry may be taken into account by 
assuming that the director n  is not an element of the unit sphere 

2 3{ 1}= ∈ : ⋅ =v v v\S , but rather an element of the real projective plane 2 2=\ ∼P S . 
The equivalence relation defining the above quotient labels as equivalent any two 
parallel unit vectors (i.e., given 2, ∈n m S , we say that n m∼  whenever 0∧ =n m ). An 
alternative way to characterize the real projective plane is provided by its representation 
as a compact submanifold of the set of symmetric linear tensors 3Lin( )\ :  
 

2 2 3 T{ with } { Lin( ) tr 1 0}L L L L L≅ ⊗ , ∈ ⊂ ∈ : = , = , ≥ .n n n\ \P S  (1) 
 
To better understand the above definition we recall that the tensor product ⊗a b  
represents the tensor that operates on a vector u  as follows  
 

3( ) ( ) with⊗ = ⋅ , , ∈ .a b u b u a a b u \  (2) 
 
Moreover, we remind when a symmetric linear tensor L  is labeled as positive 
semidefinite:  
 

30 0L L≥ ⇔ ⋅ ≥ ∀ ∈ .u u u \  
 
Thus 0⊗ ≥n n , since its spectrum is given by sp( ) {0 1}⊗ = ,n n . The representation 
given in (1) will be useful in constructing the order tensor theory below (see §5).  
 
If we let B  be the region occupied by the material, we will often nevertheless identify 
liquid crystal configurations through applications 2: →n SB . When necessary, the 
equivalence relation above will help us in reproducing the (physically correct) 
application which takes values in the real projective plane.  
 
Steric and Atomic Interactions 
The tendency of a liquid crystal to exhibit orientational order is a macroscopic outcome 
of the microscopic interaction between nearby molecules. The first rigorous proof of the 
onset of a liquid-crystalline phase in a system of rod-like molecules was derived by Lars 
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Onsager in 1949. He considered a system of rigid, rod-like molecules of length A  and 
diameter d , exhibiting only steric, excluded-volume interactions. Under suitable 
assumptions on the aspect ratio dA , the entropic effects manage to induce a low-
temperature ordered phase.  
 
The orientational organization of the liquid crystal molecules is also fostered by Van der 
Waals’ inter-atomic forces, which penalize any lack of parallelism between nearby 
molecules. The mean field theory which derives the continuum theories we will study 
below from the microscopic interactions was put forward by Wilhelm Maier and Alfred 
Saupe in 1958.  
 
Nematic and Smectic Liquid Crystals 
In the liquid-crystalline phase the molecular directors are coherently aligned, which is a 
typical crystalline property. What distinguishes liquid crystals from other solids is that 
they do not exhibit complete positional order.  
 
In a nematic liquid crystal the molecular centers of mass are disordered, and flow as 
fluid elements. A smectic liquid crystal is more structured. In it, the molecular centers of 
mass are not randomly dispersed throughout the region B . Indeed, it is possible to 
identify within B  a family of surfaces { }nΣ  (called layers) to which the molecules’ 
centers are mostly confined. Within each layer, the smectic molecules are free to behave 
as a two-dimensional fluid, while the molecular migration from one layer to another is 
energetically hindered.  
 
The segregation of the smectic molecules in layers establishes the need of a further 
order parameter that fixes the layers’ position. We thus introduce the smectic phase 
ω : → RB , a real function whose level surfaces (at fixed values) provide the layers  
 

{ ( ) }n nωΣ = ∈ : = .x xB  
 
Whenever ω  is a differentiable function, and away from the (possible) singular points 
where its gradient vanishes, the layer normal ν  is given by  
 

ων
ω

∇
= .
| ∇ |

 

 
The relative orientation of the layer normal and the director allows us to define two 
smectic sub-phases. A smectic-A is a smectic in which the director is parallel to the 
layer normal, whereas a smectic-C is a smectic in which the two directions above do not 
coincide. 
 
We restrict our treatment of smectic liquid crystals to these simple kinematic 
considerations, and focus attention on nematic liquid crystals throughout the rest of this 
chapter. However, before proceeding further, we want to stress that the above phase 
classification, while captures the essence of the most common liquid crystal phases, is 
definitely not complete. In fact, there are a number of liquid crystal systems whose 
physical properties require the introduction of new order parameters. Chiral 
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(cholesteric) liquid crystals and further smectic phases (smectic-F, smectic-G, and the 
newly identified B-phases) are just some examples of a theory whose complete 
treatment goes far beyond the objectives of the present text. We refer to the 
bibliographic section below to address the interested reader to more complete 
introductions to liquid crystal phases.  
 
Optic Axis 
The molecular orientation determines the optical properties of a liquid crystal. In fact, it 
is this very property that has determined the massive technological importance of liquid 
crystals. Without entering in much detail, we simply recall that the key link between the 
director orientation and liquid crystal optics is the fact that the Fresnel ellipsoid of the 
liquid crystal is a spheroid, symmetric about the director axis, which is then also the 
optic axis of the material. In few words, light propagates at different speeds depending 
on whether it is polarized parallel or orthogonal to the director. Thus, an incident ray 
spontaneously splits into two waves: the one with polarization orthogonal to the director 
is labeled as ordinary, whereas the parallel one is called extraordinary. A simple 
experimental setup can then select one wave or another, thus delivering a display, which 
becomes transparent or opaque depending on how the molecular orientation complies 
with the light polarization. Last but not least key to liquid crystals’ success is the fact 
that very low energies and short time intervals are required to switch the molecular 
orientations, so that liquid crystal displays turn out to be both fast and cheap 
instruments.  
 
2. Frank Director Theory 
 
This section is devoted to the analysis of the classical variational theory that captures 
most of the equilibrium properties of nematic liquid crystals. In statics, liquid crystals 
may be successfully modeled as hyperelastic materials, whose stable equilibrium 
configurations are relative minimizers of a suitable energy potential. In experimental 
conditions, the temperature of the system can easily be fixed and kept constant from the 
outside. Thus, we can assume that the system is in contact with a temperature reservoir, 
and the potential to be introduced next provides the Helmholtz free-energy functional of 
the system.  
 
The free-energy functional we analyze in this section was first derived by Sir Charles 
Frank in 1958, though it is possible to catch anticipations of the same functional in 
previous works by Hans Zocher (1928) and Carl Wilhelm Oseen (1933). The key 
mathematical requirements for the functional to be derived are the following.  
 
1. The free energy can be expressed by means of a functional depending on the 
director field and its first gradient:  
 

[ ] ( )Fr Fr , .dvσ= ∇∫n n n
B

F  (3) 

 
We remark that the definition (3) automatically complies with the Principle of local 
action, which states that the stresses at any given point x  must not depend on the state 
of material points at finite distances from x . Moreover, FrF  characterizes a 
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homogeneous material, since no explicit dependence on x  is allowed in Frσ .  
2. The potential Frσ  must be frame-indifferent. In other words, it must be invariant 
when any rigid displacement is imposed on any given configuration  
 

( ) ( ) ( )T 3
Fr Fr, , for anyR R R Rσ σ∇ = ∇ ∈n n n n \O  

 
where ( ) { }3 3 3Lin( )R R R= ∈ : ⋅ = ⋅ ,∀ , ∈u v u v u v\ \ \O  denotes the set of orthogonal 

tensors acting on 3\ .  
3. The potential Frσ  complies with the head-and-tail symmetry of the nematic 
molecules:  
 

( ) ( )Fr Fr, ,σ σ− −∇ = ∇n n n n . 
 
4. We require Frσ  to reflect the molecular tendency to become parallel. In terms of the 
free energy, this is tantamount to assume that the potential is minimized in the ground 
state where the field ( )xn  is constant:  
 

( ) ( ) 2
Fr Fr 0 0, ,0σ σ∇ ≥ ∀ ∈n n n n S   (4) 

 
We remark that the frame indifference requirement (ii) implies that the minimum value 
of Frσ  cannot depend on the particular direction 0n , provided it is constant throughout 
the system. Thus, and without any lack of generality, we may assume that the ground-
state value, attained by Frσ  in any uniform field, is null: ( )Fr 0,0 0σ =n . Finally, we 

further reinforce (8) by assuming that ( )Fr , 0σ ∇ >n n Fr( ) 0σ ,∇ >n n  whenever 0∇ ≠n .  
5. By the requirement above, the gradient of the director is expected to be as small as 
the external conditions will allow it to be. Consequently, and having in mind a sort of a 
Taylor expansion for the free-energy potential, we assume that Frσ  is a polynomial in 
∇n . Since a linear polynomial would clearly violate condition (8), we truncate the 
expansion at the first non-trivial order and assume that Frσ  is a quadratic polynomial in 
∇n .  
 
The following theorem provides the Frank formula for the free-energy potential of a 
nematic liquid crystal.  
 
Theorem. The most general free-energy functional displaying the properties (i)-(v) is 
given by (3), with  

( ) ( ) ( )

( ) ( ) ( )( )
22 2

Fr 1 2 3
2 2

2 4

, div curl curl

tr div

K K K

K K

σ ∇ = + ⋅ + ∧

+ + ∇ −

n n n n n n n

n n
 (5) 

 
The parameters 1 4{ }K … K, ,  are respectively known as splay, bend, twist, and saddle-
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splay Frank elastic constants. The potential (5) obeys the positivity requirement (4) 
whenever they fulfil the following conditions:  
 

1 2 4 2 4 3
1 ( ) 0
2

K K K K K K≥ + , ≥| |, ≥ .  (6) 

 
The proof of the above Theorem is beyond is scope of the present treatment. (See 
Bibliography below for references.) We remark that, in particular, conditions (6) require 
that 1K , 2K , 3K , and 2 4K K+  must be non-negative. A quite common approximation 
to the exact expression (5) is obtained by setting 1 2 3 0K K K K= = = > , and 4 0K = . In 
such a case it is possible to show that (5) yields  
 

2
Fr 1 Kσ , = | ∇ | ,n  

 
an expression which is known as one-constant approximation to Frσ .  
 
Boundary Conditions 
In view of the ground state identification (iv), one may wonder why the search of an 
equilibrium configuration of a nematic liquid crystal is not a trivial exercise, since all 
we have to do is to minimize a functional whose absolute minimizer is explicitly 
identified in (8). To this aim, there are two important facts that we have to keep in mind. 
First, external fields (either electric or magnetic) may interact with the nematic 
molecules, and in that case we need to add some extra contributions to the free-energy 
functional (see below).  
 
In addition, it is always possible to treat the external boundary of the region occupied by 
the liquid crystal in order to induce some preferred orientation on it. This prescription 
provides a set of Dirichlet boundary conditions for the free-energy minimizers. The 
more common surface treatments fix the director to be either parallel or orthogonal to 
the external boundary. The former (called planar anchoring) is obtained by physically 
scratching the external surface along particular directions. The outmost molecules are 
thus induced to lie within the grooves, which determine a boundary condition 
everywhere tangent to the surface itself. On the contrary, a treatment of the boundary 
with suitable surfactants induces the latter, homeotropic, anchoring. In this case, the 
director is forced to be everywhere parallel to the external normal.  
 
Once the boundary conditions are prescribed it is possible to show that the last term in 
(5) may be neglected. Indeed, simple calculations allow us to show that  
 

( )2 2tr( ) (div ) div ( ) (div )∇ − = ∇ − .n n n n n n  
 
Moreover, if we denote by ν  the normal to a smooth surface ∂B , it turns out that  
 
( )ss( ) (div ) ) (( ) ( )divν ν∇ − ⋅ = ∇ − ⋅ ,n n n n n n n n  
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where s∇  and sdiv  respectively denote the surface gradient and the surface divergence 
on ∂B . By making use of both identities we thus obtain  
 

2 2

ss

(tr( ) (div ) ) (( ) (div ) )

(( ) ( ) )div

dv da

da

ν

ν
∂

∂

∇ − = ∇ − ⋅

= ∇ − ⋅ .

∫ ∫
∫

n n n n n n

n n n n
B B

B

 

 

The contribution of the 2 4( )K K+ -term depends then only on the values that the 
director attains on the boundary. Once these values are fixed by the boundary 
conditions, such contribution yields simply a constant that may be neglected in the 
minimization process.  
 
Electric and Magnetic Fields 
The director orientation breaks the material isotropy, as we have already remarked. In 
particular, when we apply an electric or a magnetic field, the electric displacement D  
and the magnetization vector M  will in general not be parallel to the inducing fields E , 
H :  
 

a a( ) ( )χ χ χ⊥ ⊥= = + ⋅ , = = + ⋅ .D E E E n n M H H H n nε ε ε  (7) 
 
In (7), ε  and χ  are respectively the dielectric and susceptibility tensors, ⊥ε  and χ⊥  are 
the transverse dielectric and diamagnetic susceptibilities (they characterize the response 
of the liquid crystal to fields orthogonal to the director), and aε  and aχ  are the 
dielectric and diamagnetic anisotropies, which provide the extra response of the liquid 
crystal when the fields are parallel to the director.  
 
The anisotropy effects in a nematic liquid crystal have quite different orders of 
magnitude depending on whether the material is subject to an electric or a magnetic 
field. This depends on the fact that, while aε  may be almost of the same order of 
magnitude of ε⊥ , its magnetic counterpart is typically much smaller: aχ χ⊥� . A 
direct consequence of this simple estimate is that, when we apply an external magnetic 
field H , we may often neglect the perturbations that the liquid crystal induces on H . 
On the contrary, in the case of an applied electric field, E  itself will in general depend 
on the director distribution n . 
 
In all cases, in the presence of external fields, the complete free-energy functional will 
be given by Fr em= +F F F , with (in c.g.s. electromagnetic units)  
 

em
1 1

8 2
dv dv

π
= − ⋅ − ⋅ .∫ ∫D E M H

B B
F  (8) 

 
3. Nematic Displays: Freedericksz Transition 
 
As soon as an external field induces a preferred director orientation which is not in 
agreement with the boundary prescriptions the problem of minimizing the complete 
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free-energy functional is far from being trivial. In this section we study the so-called 
Freedericksz transition, a bifurcation instability that governs the on-and-off mechanism 
of most liquid crystal displays.  
 
Before entering the physical problem, we first study in some detail a toy variational 
model which clarifies the mathematical origin of the bifurcation phenomenon we 
describe below. 
 
3.1. The Variational Origin of Freedericksz’ Threshold 
 
Let us consider the functional  
 

( )2[ ] ( ) ( )
b

a
u f u u g u dx′ + ,∫εF ε  (9) 

 
with 0≥ε , and 1( )f g C, ∈ \  such that 0( ) 0f t f≥ >  for all t∈\ , while g  is bounded 
from below, with (0) 0g = , and  
 

( ) ( ) when 0 for some 1g t t o t tβ βα β= − + → , ≥ .  (10) 
 
We consider the problem of finding uε , the minimizer of εF  in the Sobolev space 

1 1
0( ) { ( ) ( ) ( ) 0}H a b u H a b u a u b, = ∈ , : = = .  

 
The Euler-Lagrange equation relative to the functional (9) is given by  
 

22 ( ) ( ) ( ) 0f u u f u u g u′′ ′ ′ ′+ − = .ε ε ε ε εε        (11) 
 
When 0ε = , the trivial solution 0( ) 0u x ≡  satisfies both the differential equation (11) 
and the boundary conditions. Moreover, in view of the positivity of f , it is indeed the 
absolute minimizer of 0F . More in general, the trivial null solution is a stationarity 
point of the functional for any ε  whenever 1β >  in (10) (and, thus, (0) 0g′ = ). Same 
conclusions apply if g  is non-negative, since moving u  away from its null boundary 
values has a positive cost in the first term of (9). Such cost has to be balanced by a gain 
in the second term for nontrivial minimizers to arise. For this reason we will assume 

0α >  in (10).  
 
When the lower bound of g  is negative, but ε  is small, the minimizer is small as well. 

Let 0inf 0g g= − < . Then 2
0 02[ ] ( )u f u g b a′≥ − −εF ε , where 2⋅  denotes the 2 ( )L a b, -

norm. Any nontrivial minimizer must then satisfy  
 

2 0
2

0

( )g b a
u

f
−

′ ≤
ε
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if it aims at being preferred to the trivial solution. As a consequence,  
 

32
2 2 0
2 22 2

0

( )( ) g b ab au u
fπ π
−− ′≤ ≤ .

ε
 

 
A more intriguing property is that when ε  is sufficiently small, the potential g  is not 
able to induce any modification of the minimizer if 2β ≥  in (10). To better understand 

this feature, we assume ( ) ( ) ( )u x u x oγ γ
γ= +ε ε ε , with γ  a positive exponent to be 

determined. The leading order of the differential equation (11) yields  
 

( 1) 1 1 12 (0) ( ) ( ) 0f u u o oγ γ β β γ β
γ γαβ − + − −′′ + + + = .ε ε ε ε     (12) 

 
For any 2β ≥ , ( 1) 1γ β γ− + >  and the second term in equation (21) can be neglected 
with respect to the first. The leading order of (21) is thus 0uγ′′ =  that, together with the 

boundary conditions, yields 0uγ ≡ .  
 
As an exercise, the reader may show that if 1β =  the minimizer is given by  
 

( )( )( ) ( ) when 0
4 (0)

a x x bu x o
f

α − −
= + , → .ε
ε

ε ε  

 
Moreover, if 1 2β≤ <  the minimizer is 1 (2 )( ) ( )u x O β/ −=ε ε  when 0→ε .  
 
When 2β ≥ , we can complete our analysis by searching for possible bifurcations from 
the trivial minimizer that may arise at finite values of ε , say crε . Let then crδ = −ε ε , 

and let ( ) ( ) ( )u x u x oγ γ
γδ δ= +ε , with γ  a positive exponent to be again determined. 

The Euler-Lagrange equation (11) yields now  
 

( ) ( ) ( )( )1 11
cr2 (0) 0f u u o oγ β γ βγ β γ

γ γδ αβδ δ δ− −−′′ + + + =ε     (13) 

 
If 2β > , equation (13) does never admit nontrivial solutions, since the second term is 
infinitesimal with respect to the first, and the limit equation is still 0uγ′′ = .  
 
The critical case 2β =  is peculiar: in such a case, the limit equation becomes  
 

2 cr0 with
(0)

u u
fγ γ
α

ω ω′′ + = , := ,
ε

 

 
which admits the nontrivial solution ( ) sin ( )u x A x aγ ω= −  provided 
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( ) sin ( ) 0u b A b aγ ω= − = . Thus, we must have  
 

( )
( )

2 2

cr 2
0

( ) .
n f

b a n
b a

π
ω π

α
− = ⇒ =

−
ε       (14) 

Equation (14) provides a discrete set of values of critical values at which nontrivial 
solutions bifurcate from the null solution.  
 
In summary, we have unveiled the following picture. If the potential g  behaves as 

( )g u uβ∼  when u  is small, the exponent β  governs the stability of the null minimizer.  
• If g  is non-negative, the minimizer does never abandon its null value.  
• If [1 2)β ∈ ,  the minimizer leaves the null value as soon as the potential is switched 

on.  
• If 2β =  a bifurcation from the null solution appears at a finite value of the potential 

intensity: we may be in the presence of a second-order phase transition.  
• If 2β >  no bifurcation arises. The null solution is abandoned at a finite value of the 

potential intensity through a discontinuous, first-order phase transition.  
 
As a further exercise the reader may prove the following properties.  
 
Assume that 0[ ] [ ]u u≤ε εF F  for some 0>ε  and some 2 0u >  that complies with the 

prescribed null boundary conditions. Show that 0[ ] [ ]u u<ε εF F  for any >ε ε . (As a 
consequence, the trivial solution 0u  is a minimizer only in an interval of values of ε .)  
 
Let inf 0g < . Show that the trivial solution 0u  is a minimizer only in a finite interval 

[0 ]∈ , �ε ε . [Hint: Let 1u  such that 1( ) 0g u < . Construct explicitly a function ( )u x  that 

attains the value 1u  in [ ]a bγ γ+ , −ε ε . Show, by suitably choosing γ , that it exists an ε  
above which u  is preferred to the trivial solution.]  
 
 
- 
- 
- 
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