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Summary 
 
Classical Constitutive equations like the Navier-Stokes model for fluids and the 
linearized elastic model for solids are explicit models in that they provide explicit 
expressions for the stress in terms of kinematical quantities. Similarly, the constitutive 
equation for a Simple Material is also an explicit equation for the stress in terms of the 
histories of the deformation gradient and the density. However, many rate type models 
that have been developed to describe viscoelastic and inelastic materials are implicit in 
that a equation is provided for the stress, and its time rates, as well as appropriate 
kinematical quantities and their time rates. Even when time rates are not involved, such 
implicit models are very useful in describing a large class of materials, especially those 
wherein the material moduli depend on the Lagrange multiplier that is associated with a 
constraint. Thus, for example, such implicit equations can describe incompressible 
materials in which the material moduli depend on the pressure (mean normal stress). In 
this chapter we discuss very briefly the role of implicit constitutive relations in 
mechanics. 
 
1. Introduction 
 
Classical constitutive relations such as those that are used to describe the linearized 
elastic and linear viscoelastic (To be precise, the model should also be referred to as the 
linearized viscoelastic model as the strain that is used in the constitutive representation 
is the linearized strain rather than a fully and proper non-linear strain measure.) 
response of solids, namely Hooke’s law (see Hooke’s Potentia de Resistuva in Gunther 
(1931)) and the linear viscoelastic solid model (Boltzmann (1874)), as well as the Euler 
fluid model (Euler (1752), (1755) and the Navier-Stokes (Navier (1823), Poisson 
(1831), St. Venant (1843), Stokes (1845)) models for compressible and incompressible 
fluids are all explicit constitutive relations in the sense that they provide an explicit 
expression for the stress. In the case of the classical linearized elastic model and the 
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linear viscoelastic solid models one can also provide explicit expressions for the 
linearized strain in terms of the stress (Though the classical Navier-Stokes model is not 
described by providing an expression for the symmetric part of the velocity gradient in 
terms of the stress, one can do so.). Many, but not all, of the popular models that are in 
vogue fall under the category of constitutive expressions wherein the stress can be 
expressed as a functional of the history of the deformation gradient, a category 
introduced by Noll (1954) which he called simple materials. However, models for 
plasticity and many of the rate type theories that are being used do not fall into the 
category of simple materials introduced by Noll (1957), (1958). The rate type model 
defined by Truesdell and Noll (1992) is a special type of rate model in that the pth order 
derivative of the stress is related to the stress, and its (p-1) time derivatives as well as 
the first r  derivatives of the deformation gradient. However, they realized that even this 
special rate type model they define need not belong to the class of simple fluids as they 
remark “In general it is not possible to reconstruct from the relation (36.2) the 
corresponding constitutive equation (36.1). In fact, it is conceivable that a single 
relation of the form (36.2) be satisfied for several different simple materials, and that 
some solutions not correspond to some materials at all. Thus we must regard a particular 
differential equation (36.2) as defining a class, possibly empty, of materials of the rate 
type rather than a single such material”. More general rate type models definitely do not 
fall into the class of simple fluids. Noll (1972) later generalized his definition of a 
simple material to include rate type models for plasticity, etc. However, even this 
generalization retains the feature of expressing the stress as a functional of kinematical 
quantities and some ad hoc state variables which do not have clear physical 
underpinning though there is a discussion of some thermodynamic issues which are far 
from complete. In any event, such models do not belong to the general implicit 
constitutive theories we shall discuss. The point is Noll’s theories always define the 
stress in terms of functionals of certain kinematical variable. They do not include for 
instance a theory in which all one has is a relation between the stress and its various 
derivatives as well as kinematical quantities and their various derivatives, related 
implicitly. For instance, it is not possible to describe certain types of material response, 
say that for constrained materials whose material properties depend on the Lagrange 
multiplier that enforces the constraint (It would be appropriate at this juncture to point 
to the fact that most models that have been proposed to describe the inelastic response 
of materials are rate type models which are not simple materials in the sense of Noll’s 
original definition in 1958. However, while his new theory of simple materials could be 
used to model inelastic response, there is absolutely no discussion of how such a theory 
can be put into place to describe the response of a specific material  or a discussion of 
the physical underpinnings) . We shall discuss this issue in detail later. 
 
It is worth pointing out that constitutive models have been proposed wherein the 
material moduli, that describe the body, for instance, depend on the mean normal stress 
as well as the shear stresses in the body leading to implicit models for the stress and the 
symmetric part of the velocity gradient. Saal and Koens (1933) assumed that the 
viscosity of asphaltic bitumen depended on both the shear stress and normal stress, i.e., 
they had a truly implicit constitutive theory, and Bingham and Stephens (1934) 
investigated the effect of pressure on the “fluidity” of bodies (see Murali Krishnan and 
Rajagopal (2003) for a discussion of the relevant issues). More recently, Morgan (1966) 
has discussed the use of implicit constitutive theories, but the scope of his work is 
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limited. 
 
Let us for a moment consider a very simple ideal model. Suppose we have a 
generalization of the classical incompressible Navier-Stokes fluid whose viscosity 
depends on both the pressure and the symmetric part of the velocity gradient. There is 
nothing with regard to physics which proscribes the consideration of such a model and 
we will see that the stress in such a body is expressed in terms of the mean value of the 
stress and kinematical variables; the constitutive expression is necessarily an implicit 
relation.  
 
There is unfortunately a cavalier attitude when it comes to describing how a body is 
constituted. One tends to use the terms constitutive relation and constitutive equation 
interchangeably but nothing could be more inappropriate. The first implies that there is 
a relation between various quantities like the stress, strain, rate of strain, etc., which 
could be an implicit relationship, while the second implies that one of the quantities can 
be expressed as a function of the others.  
 
Many implicit rate type constitutive models have been introduced to describe the 
behavior of solids and fluids. However some early rate type constitutive theories like 
those introduced by Maxwell (1866) to describe the behavior of viscoelastic fluids can 
also be integrated and the stress can be expressed explicitly in terms of the history of 
kinematical quantities. However, not all rate type models can be integrated to yield 
explicit expressions for the stress in terms of the history of the deformation gradient. In 
fact, this is one of the early erroneous conclusions in plasticity theory wherein the stress 
is assumed to depend on the strain and the “plastic strain” and a rate equation is given 
for the plastic strain. If the rate equation for the plastic strain could be integrated to 
provide an expression for it in terms of the history of the deformation gradient, then one 
would in fact have an explicit expression for the stress and we would have a simple 
material in the sense of Noll (1957). The problem is that invariably such an integration 
for determining the “plastic strain” cannot be carried out. 
 
2. A Simple Implicit Model 
 
That the viscosity in a fluid can depend upon the pressure was recognized several 
centuries ago. A detailed discussion of the history of experiments concerning the 
dependence of viscosity on pressure (Here one ought to be careful to recognize that in 
all the instances mentioned, the “pressure” that is referred to is the “pressure” of the 
fluid in the confining medium and that the “pressure” in the fluid that is being tested is 
assumed to be uniform throughout the fluid that is being tested and equals the pressure 
in the confining medium.) can be found in the book by Bridgman (1931). The early 
experiments of Perkins involved dropping a Cannon into the depths of the Ocean in 
order to create a high pressure environment for the fluid being tested which filled the 
Cannon, and the inventive work of Amagat, wherein “Amagat developed a special 
packing technique by which he was able to consistently reach pressures of 3000 
kg./cm. 2 or more.” (see Bridgman (1935). In the section on how the viscosity of fluids 
varies with pressure Bridgman refers to the early experiments of Roentgen, Warburg 
and Sachs, Hauser, Cohen, and other investigators all of whom used some form of a 
capillary flow method for a number of lubricating oils, and found the viscosity of the 
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test fluid rising with pressure.  
 
Stokes (1845) also recognized the fact that the viscosity of a fluid depends on the 
pressure and states “If we suppose μ  to be independent of the pressure also, and 
substitute . . .” the implication here is that in general the viscosity could depend on the 
pressure but that he is making such an assumption in a particular class of flows. In fact, 
Stokes’ intent becomes clear when he comments soon afterward in the paper “Let us 
now consider in what cases it is allowable to suppose μ  to be independent of the 
pressure. It has been concluded by Du Buat from his experiments on the motion of 
water in pipes and canals, that the total retardation of the velocity due to friction is not 
increased by increasing the pressure . . . I shall therefore suppose that for water, and by 
analogy for other incompressible fluids, μ  is independent of the pressure”. He does not 
explicitly state whether he is referring to the “mechanical pressure” or the 
“thermodynamic pressure”. 
 
Barus (1893) proposed the following exponential relationship between viscosity and 
pressure: 
 

( )0 exp ,pμ μ α=   (1) 
 
where α  has units ( ) 1Pa −  and p  is expressed in ( )Pa . That viscosity in fact rises 
sharply with pressure has been repeatedly verified (see experiments cited in Hron et al. 
(2003) and see Bair & Koptte 2003, figure 1). Using Barus’ equation to get a rough 
estimate of the variation in the viscosity with pressure for Naphthalemic mineral oil α  
has been determined experimentally to be 26.5GPa−1 at 20 ◦C, 23.4GPa−1 at40 ◦C, 
20GPa−1 at 60 ◦C and 16.4GPa−1 at 80 ◦C (see Hogland 1999). Thus a change of 
pressure from 0.1GPa to 1.0 GPa at 60 ◦C leads to a change in the viscosity of 4.85 × 
108 %! The density on the other hand changes according to the relation (see Dowson-
Higginson 1966) 
 

( )
( )0

0.6
1 .

1 1.7
p

p
ρ ρ

⎡ ⎤
= +⎢ ⎥+⎣ ⎦

  (2) 

 
Thus, the change in density is approximately 16%. For a smaller range in the variation 
of pressure, while the viscosity can vary significantly, the density variation could be 
merely a few percent (the percentage change in the density when the pressure changes 
from 2 to 3GPa is approximately 3.5 %). While such a change in density needs to be 
taken into account if one is interested in describing the response accurately, in most 
applications one can ignore the density change and model the fluid as being 
incompressible. 
 
Andrade as quoted in Bridgman's book (see also Andrade (1930)) suggested the 
following dependence of the viscosity on pressure, density and temperature: 
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( ) ( )1 22, , exp ,sp A p rμ ρ θ ρ ρ
θ

⎡ ⎤= +⎢ ⎥⎣ ⎦
  (3) 

 
where ρ  denotes the density, θ  the temperature, p  the pressure, and r , s  and A  are 
constants. Here once again the pressure refers to the pressure of the confining fluid 
rather than the confined fluid that is tested, but the tacit assumption is that the pressure 
in the fluid being tested is uniform and that of the confining fluid as remarked earlier. 
However, since the variation in the density is small and since the density can be treated 
as a constant in such cases, the viscosity depends on the pressure in the fluid and the 
temperature. 
 
It is well known that several fluids have the ability to shear thin as well as shear thicken. 
Let us confine our attention to the class of fluids that are incompressible with the stress 
given by the “relation” 
 

( )2ˆ ,1 1 , ,p pμ θ⎡ ⎤= − + ⎣ ⎦T 1 D D   (4) 

 
where D is the symmetric part of the velocity gradient. 
  
Since the fluid is in incompressible, it can undergo only isochoric motions and thus 
 
tr 0,=D   (5) 
 
which implies that 
 

1 tr .
3

p = − T   (6) 

 
Thus, it is reasonable when subject to a wide range of pressures, the viscosity could 
depend on both the pressure and the shear rate (symmetric part of the velocity gradient). 
 
This would lead to a model of the following kind: 
 

( )21 ˆtr tr ,1 1 , .
3

μ θ⎛ ⎞ ⎡ ⎤= − +⎜ ⎟ ⎣ ⎦⎝ ⎠
T T 1 T D D   (7) 

 
where μ̂  is a function of the first invariant of the stress and the second invariant of the 
symmetric part of the velocity gradient. Thus, depending on the form of the viscosity, 
one might not be able to express the stress explicitly in terms of the symmetric part of 
the velocity gradient. This is probably one of the simplest instances of an implicit 
constitutive relation whose generalization is best expressed as: 
 
( ), , 0.θ =f T D   (8) 

 
We notice that (8) is not an explicit relation (and neither is (7)) for the stress as a 
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function of D  but it is an implicit relation. 
 
The Cauchy stress T  in a compressible Navier–Stokes fluid is related to the symmetric 
part of the velocity gradient through 
 

( ) ( ); 2p trρ θ λ μ= − + +T 1 D 1 D   (9) 
 
In general, the pressure p  (given by an equation of state) and the material moduli λ  
and μ  will depend on the density and the temperature. There is nothing to prevent a 
generalization of the same, wherein one considers a fluid whose constitutive relation is 
given by 
 
( ), , , ,ρ θ =f T D 0   (10) 

 
which would be the implicit counterpart for a compressible fluid of the incompressible 
fluid model (8). Thus, in such a model one allows for the possibility of the 
“thermodynamic pressure” being different from the mean normal stress. 
 
 
 
- 
- 
- 
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