
BIOMECHANICS - Modelling Flows In Collapsible Tubes - Xiaoyu Luo 

©Encyclopedia of Life Support Systems (EOLSS) 

MODELING FLOWS IN COLLAPSIBLE TUBES  
 
Xiaoyu Luo  
University of Glasgow, UK  
 
Keywords: Collapsible tubes, Navier–Stokes equations, fluid-structure interaction, 
instability, self-excited oscillations, finite element methods, Arbitrary Lagrangian–
Eulerian method, eigenvalue problems, the Starling Resistor, Tube law.  
 
Contents 
 
1. Introduction 
2. The Starling Resistor and the Tube Law 
3. One-dimensional models 
4. Two-dimensional models 
5. Three-dimensional models 
6. Outlook 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
This chapter summarizes some recent modeling work of flows in flexible or collapsible 
vessels, with particular focus on a prototype problem concerning self-excited 
oscillations in the Starling Resistor. Although self-excited oscillations in collapsible 
tube flows have been extensively studied, our understanding of their origins and 
mechanisms is still far from complete. The paper starts briefly with the background to 
the problem, and introduces some mathematical and numerical approaches based on 
one-dimensional, two-dimensional, and three-dimensional models. The summary is not 
intended to be exhaustive but is designed to offer a flavor of the research in this area, 
and is inevitably focused on the work familiar to this author. 
 
1. Introduction 
 
In physiological fluid mechanics, blood flow inside large vessels may collapse and 
experience interesting self-excited oscillations under a negative transmural (internal 
minus external) pressure. These vessels are thus collapsible tubes. Flows in collapsible 
tubes form a significant branch of the biological and physiological applications of 
internal flow. Veins above the level of the heart can collapse as the transmural pressure 

tmP  reduces as external muscles squeeze (Wild et al, 1977, Pedley, 1980). 
Intramyocardial coronary blood arteries collapse during heart contraction in systole 
(Guiot et al., 1990). Similar behavior is seen in the branchial arteries compressed by a 
sphygmomanometer cuff (Bertram and Ribreau, 1989), in the large airways during 
forced expiration (Shapiro, 1977, Kamm and Pedley, 1989), and in the urethra during 
micturition (Griffiths 1989). 
 
These, and the closely related problems, have been studied by various research groups 
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over the last 40 years, ranging from flow in giraffe jugular vein to peristaltic pumping, 
and to flow over compliant surfaces (Shapiro, 1977, Brook and Pedley, 2002, Ku, 1997, 
Elad et al., 1989, Dia et al., 1999, Tang et al., 1999, Tutty and Pedley, 1993, Elad et al., 
1987, Gavriely et al., 1982, Kamm and Shapiro, 1979, Davies and Carpenter, 1997, 
Cancelli and Pedley, 1985, Carpenter and Pedley 2003, Carew and Pedley, 1997, 
Jensen, 1990, Rast, 1994, Luo and Pedley, 1996, Grotberg and Gavriely, 1989, Hazel 
and Heil, 2003, Heil and Pedley, 1995, Guneratne and Pedley, 2006), to mention just a 
few. Some earlier reviews are given by Kamm and Pedley (1989), Pedley and Luo 
(1998), Bertram (2004), and Grotberg and Jensen (2004). 
 
In this chapter, we shall limit our attention to studies that form a sub-set of applications 
concerning the flow in large vessels, focusing on the phenomena observed from the 
Starling Resistor.  
 
2. The Starling Resistor and the Tube Law 
 
The Starling resistor is a commonly used bench-top apparatus for studying flow in 
collapsible tubes, as depicted in Figure 1.  
 

 
 

Figure 1. Sketch of a Starling resistor. 1p , Q  are pressure and flow rate upstream of the 
collapsible segment; ep  is the external pressure, 2p  is the pressure downstream, up  is 
the total pressure far upstream and dp  is the pressure far downstream. In the absence of 

the upstream and downstream tube resistances, 1 up p= , and 2 dp p= . 
  
It was first used in a study of cardiac functions by Knowlton and Starling (1912) to 
predict the collapse of a tube. The apparatus consists of a collapsible rubber tube fixed 
at both ends inside a chamber where the external pressure ep  can be adjusted 
independently. Fluid is held upstream in a reservoir from which it passes through a rigid 
tube into the collapsible segment in the chamber and out into a downstream reservoir. 
Resistors downstream are in place to control pressure and flow at the entrance and exit 
of the collapsible segment. When flow is driven through the elastic tube section, the 
transmural pressure, ep p− , can become sufficiently negative due to the Bernoulli 
effect, that the tube collapses, partially or fully, with reduced cross-sectional area A . 
The relationship between ep p−  and A  is known as the “Tube law".  
 
Unlike fluid flowing through a rigid tube, here more combinations of control parameters 
are possible. For example, one may specify the pressure head ( )1 2p p− , or flow rate 
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Q , while keeping downstream transmural pressure 2 ep p−  constant. These are 
sometimes referred to as the “pressure-driven system", or “flow-driven system", 
respectively (Liu et al., 2012). Alternatively, one can study the pressure- or flow-driven 
systems while keeping the upstream transmural pressure 1 ep p−  fixed. Each of these 
settings determines a specific system with its own unique characteristics. The 
commonly observed “flow limitation" (Gavriely et al., 1989) and “pressure-drop 
limitation" (Bertram and Castles, 1999), are interesting phenomena corresponding to 
specific configurations of these settings. If we increase 1 2p p−  while keeping 1 ep p−  
constant, then at some point the flow rate cannot be increased further, and this is called 
“flow limitation". Likewise, if we increase Q  while keeping 2 ep p−  constant, then 
soon or later the pressure-drop will stop increasing; this is “pressure-drop limitation". In 
fact, pressure-drop limitation can even show up as “negative effort dependence", 
whereby the flow rate increase is accompanied by pressure drop decrease (Gavriely et 
al., 1984, Gavriely and Grotberg, 1988, Luo and Pedley, 2000).  
 
Over the last 30 years, Bertram and co–workers have conducted a sequence of extensive 
experimental studies of this system (Bertram, 1980, 1995, Bertram and Castles, 1999, 
Bertram and Chen, 2000, Bertram and Elliott, 2003, Bertram et al., 2001, Bertram and 
Tscherry, 2006). One of the interesting phenomena observed in these experiments is 
self-excited oscillation, when a spontaneous fluctuation in pressure, flow and cross-
sectional area of the tube occurs (Conrad, 1969, Bertram, 1986, Low et al., 1997). It is 
important to recognize that pressure drop may not be the only contributing factor 
involved in the collapse. The length and rigidity of the tube also play a significant effect 
on collapse and subsequent self-excited oscillations (Bertram, 1980). 
 
Despite the seemly straightforward experimental setup, the nature of the self-excited 
oscillations was proven to be rather difficult to explain. However, over the years, there 
have been some significant advances in the analytical and simulations. In the following, 
we provide a brief summary of the progress made to date, which ranges from early 
lumped parameter models to fully three dimensional simulations, with particular 
attention to several recent approaches developed by this and other groups in the last few 
years. Some of the earliest developments were lumped parameter, or zero-dimensional 
models such as (Conrad, 1969, Shapiro, 1977, Bertram and Pedley, 1983) which 
focused on describing pressure and flow as function of cross-sectional area only, at the 
narrowest point. This simplification enables one to obtain a 2nd or 3rd order ODEs, 
depending on inlet boundary conditions. These models can be used successfully to 
produce some self-excited oscillations. The models highlight the importance of energy 
dissipation in order to sustain the self-excited oscillations, and show that the flow-
driven system (which can be described by 2nd order ODE) is more stable than the 
pressure-driven system (which is often described by 3rd order ODE). However, in 
general these models cannot incorporate many real mechanical features. Their inability 
to capture wave propagation is a fundamental limitation which prompts the 
development of 1D models. 
 
3. One-Dimensional Models 
 
A simple one-dimensional model for a steady flow is described by  Shapiro (1997) 
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( ) 0d uA
dx

= ,          (1) 

 

( )1 , ,du dpu R A u u
dx dxρ

= − −         (2) 

 
( )ep p P A− = ,         (3) 

 
where A  is the cross-sectional area, u  is the velocity, p  is the pressure, x  is the 
longitudinal coordinate, ( )0Ru R >  represents the resistance, and ( )P A  describes the 
tube law.  
 
Combining (1) and (2) , we have  
 

2 2 ,dA RuA
dx c u

= −
−

 

 

where ( )1 2
dPA
dAc ρ=   is the speed of propagation of long, small-amplitude pressure 

waves. 
 
These equations are exactly analogous to those for free-surface flow in shallow water 
channel. It is immediately clear that the steady model breaks down when u  approaches 
c . This is known as “choking", analogous to a hydraulic jump in shallow water in a 
channel flow. A number of researchers have gone further to advocate that the fluid 
velocity becoming comparable to the wave speed, i.e. the occurrence of flow-limitation, 
is the major mechanism for the onset of self-excited oscillations. However, later 
experiments by Bertram and Raymond (1991) and computations by Luo and Pedley 
(2000) cast doubtover a causal link between choking and self-excited oscillations.  
 
Indeed, it is now believed the “chocking" mechanism is not responsible for self-excited 
oscillations in the Starling resistor, since the length of tube used is too short for choking 
to occur, and the 1-D model fails to describe the downstream (tube re-opening) 
conditions (Pedley and Luo, 1998).  
 
To address this issue, a modified 1-D model was developed to include tension, T , and 
energy dissipation (Cancelli and Pedley, 1985, Jensen and Pedley, 1989, Luo and 
Pedley, 1995), with the governing equations  
 

( ) 0d uA
dx

= ,          (4) 

 
 

( )1 , ,du dpu R A u u
dx dx

χ
ρ

= − −         (5) 
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( )
2

2 ,e
d Ap p P A T
dx

− = −         (6) 

 
where χ  is the dissipation constant ( )0 1χ< < , (6) is the updated tube law, and P(A) is 
empirically determined.  
 
One simple form of P(A) is (Jensen and Pedley, 1989): 
 

( ) ( )
( )

3 2
p

p

1 for 1,

1 for 1,

K
P A

K

α α

α α

−⎧ − <⎪= ⎨
− >⎪⎩

 

 
where 0A Aα = , and pK  is a constant. Using this model, Jensen and Pedley (1989) 
showed that, as long as there is energy loss in the system i.e. 1χ < , then a steady 
solution exists for all positive values of flow rate and tension T . Since energy loss is 
inevitable, this suggests that the breakdown of the steady flow model is not caused by 
choking, but must arise through the global instabilities of the steady solutions. Indeed, 
this has been proved by (Luo and Pedley, 1996), among others, using two-dimensional 
models. More advanced 1-D approaches were used by (Pedley and Luo, 1998, Stewart, 
2009), based on a long wavelength assumption. In this case, the mass and momentum 
equations are integrated across the two-dimensional channel height h , to give  
 

( ) 0,t xh Uh+ =          (7) 
 

( )2
00

1 1 ,
h h

t x x y
x

U UU u dy p u
h hRe

⎡ ⎤+ + = − + ⎣ ⎦∫      (8) 

 

( ) 3 22
e 1 ,xx xp p Th h

−
− = +         (9) 

 
where T  is the membrane tension, ep  is the (constant) external pressure, U  is the 
average velocity across the channel, u  represents the velocity fluctuation across the 
channel, and Re  is the Reynolds number, defined as the ratio between the inertia and 
the viscous forces. Using the Karman-Pohlhausen approximation with a specific 
velocity profile, Pedley and Luo (1998) solved these equations and explored various 
assumptions of relating the pressure drop to flow separation downstream of the 
narrowest cross-sectional area. Essentially, they showed that these 1-D models cannot 
predict the full strength of the energy loss seen in the 2-D models when the wall 
deformation is severe. 
 
On the other parameter region, in the limit of the high-Reynolds number region and 
when the channel deformation is small, Stewart (2009) was able to use this type of 1-D 
systems to capture the mode-1 “sloshing" oscillations initially identified by Jensen and 
Heil (2003) using an asymptotic analysis (where mode- i  indicates that the perturbation 
profile contains i  humps). By further analyzing the energy budget for high-Reynolds-
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number and pressure-driven systems, they showed that the energy budget behaves 
differently in mode-1 and mode-2 oscillations. For mode-1 oscillations about the 
uniform base state, the time-averaged net kinetic energy flux into the system is positive, 
therefore the kinetic energy is extracted from the mean flow and is dissipated by the 
oscillations. However, for mode-2 neutral oscillations, the time-averaged net kinetic 
energy flux into the system is negative, suggesting a different physical mechanism.  
Recently, Xu et al. (2013, 2014) considered a 1-D model under a uniform base state for 
a flow-driven (flux-driven) system, which is identical to the model used by Stewart et 
al. (2009, 2010) except for the boundary conditions. Using asymptotic analysis, they 
revealed that when the downstream length is comparable to the membrane length, the 
system becomes unstable when a Hopf and transcritical bifurcation arise 
simultaneously, giving rise to mode-2 perturbations (i.e. membrane displacements with 
two extrema). However, when the downstream length is much longer than the 
membrane length, there is an independent mechanism of instability that is intrinsically 
coupled to flow in the downstream rigid segment, and is promoted by a 1:1 resonant 
interaction between two modes. These studies provided new insight to the nature of 
self-excited oscillations that occurring in the system. However, due to the assumptions 
introduced, further two and three-dimensional computational studies are necessary to 
assess the wider relevance of the instability mechanisms identified therein. 
 
4. Two-Dimensional Models 
 
Due to the complexity of three-dimensional models and high computational 
requirements, two-dimensional models are used extensively to understand the 
mechanisms of the rich dynamic behavior observed in the Starling Resistor system. A 
widely used two-dimensional approach was introduced by Pedley (1992), in which the 
fluid mechanics is based on a lubrication theory. This is also known as the “Fluid-
membrane" model, which consists of a channel flow with two rigid parallel planes, with 
the upper wall replaced by a thin membrane of length L . The membrane has no bending 
stiffness and inertia but is under longitudinal tension T , as shown in Figure 2. This 
system is simpler than 3D models but in principle can be realised experimentally. 
 

 
 

Figure 2. Sketch of the two-dimensional model. 
 
The fluid mechanics in this model was later improved by using the Stokes equations 
(Lowe and Pedley, 1995), and then the Navier-Stokes equations (Luo and Pedley, 
1995), so that the steady governing equations of the system are  
 

( ), ,Re ,i j j i i jju u p u= − +         (10) 
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, 0,j ju =           (11) 
 

ep p Tκ− =           (12) 
 
Where Re is the Reynolds number, and the coordinates are scaled with the rigid channel 
height D , the velocity components iu  are scaled with the inlet velocity 0U , tension T  
is scaled with 0Uμ , pressure p  is scaled as 0p pD Uμ= , and κ  is the curvature 
calculated from the channel height h  under the elastic section:  
 

( ) 3 221h hκ
−

′′ ′= + . 
 
These equations were solved by (Rast, 1994, Lowe and Pedley, 1995, Luo and Pedley, 
1995) using the finite element methods. At the low Reynolds number, the solutions 
agree very well with the results using the lubrication theory, and importantly, solutions 
exist for almost any positive values of the membrane tension. The only limitation  
comes from the numerical scheme, which fails to converge if tension is too small. For a 
Reynolds number ( Re ) of up to a few hundred, Shim and Kamm (2002), and Rast 
(1994) predicted steady membrane configurations similar to those of 1D models, but 
showed more fluid flow details, such as flow separation downstream of the collapsed 
section, long–wavelength nonlinear standing waves downstream of the constriction, and 
vortex– shedding eddies along both walls. 
 
Treating the flexible segment as a membrane and assuming 1Re , Guneratne and 
Pedley (2006) used interactive boundary-layer theory to describe steady flows: when the 
transmural pressure downstream ~ 0  and the membrane tension T  is reduced from an 
initially large value, the system exhibits an increasing number of static eigenmodes 
arising via a static divergence instability; nonzero values of ep  break the symmetry of 
the solution structure so that as T  falls one passes through regions of parameter space 
exhibiting single, multiple, or no steady solutions. 
 
Huang et al. (2001) assumed that the membrane has inertia, damping, and relatively low 
tension. This enabled him to analyze the linearized Navier–Stokes equations, and he 
showed that the system exhibits both static divergence (at sufficiently low tension) and 
flutter (dependent on the membrane inertia), which are sensitive to the choice of 
upstream and downstream boundary conditions. 
 
Using the arbitrary Lagrangian-Eulerian (ALE) approach, Luo and Pedley (1996) 
embarked on unsteady modeling of a fully coupled nonlinear system:  
 

( )A
, , ,

1 ,i
i j j j i i jj

u u u u p u
t Re

∂
+ − = − +

∂
       (13) 

 

, 0,j ju =           (14) 
 

where all others variables are the same as in (10)(11) but now the pressure p in (12) is 
replaced by the normal stress component which is scaled with the dynamic pressure 
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head 2
0Uρ , and T  is scaled with 2

0U Dρ . Note A
ju  is the grid velocity which is in 

general non-zero. In the extreme cases when A 0ju =  or ju , the equations are described 
in the Lagrangian or Eulerian frame of reference. These are solved with a Petrov-
Galerkin finite element scheme coupled with a spine method. For six-node triangle 
elements, it can be shown that in this approach the geometric conservation law is 
exactly satisfied (Liu et al., 2012). Luo and Pedley (1996) showed how these steady 
flows can become unstable to self-excited oscillations if Re is sufficiently high or the 
membrane tension sufficiently low. The membrane oscillations are found to be closely 
associated with the downstream propagating waves in the inviscid core flow beyond the 
constriction. These resemble the vorticity waves or large-amplitude TS waves described 
previously by Stephanoff et al. (1983), Ralph and Pedley (1988). Luo and Pedley 
(1996,1998) also found that the dissipation primarily occurs in the viscous boundary 
layers on the channel walls upstream of the constriction, and not in the downstream 
separated flow zones as was previously expected, which is illustrated by Figure 3. 

 

 
 

Figure 3. Snap shots of instantaneous streamlines (lighter lines) and energy dissipation 
contours (darker lines) generated in the self-excited oscillations by Luo and Pedley 

(1998). 
 

In addition, Luo and Pedley (1998) showed how introducing inertia in the membrane 
allows an additional high-frequency flutter mode to grow. In a subsequent study (Luo 
and Pedley, 2000), they found existence of multiple solutions for a given set of control 
parameters, and how the primary instability is sensitive to the choice of boundary 
conditions. The system is more stable when the upstream flux, rather than the pressure 
drop, is prescribed. Using interactive boundary-layer equations, Pihler-Puzovic and 
Pedley (2013) discovered that for high-Reynolds-number flow in a two-dimensional 
collapsible tube, a unique steady solution exists when the pressure is fixed precisely at 
the downstream end of the membrane, but there are multiple states possible if the 
pressure is specified further downstream.   They also found  that  no  self-excited  
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ud u dp p p= − : Pressure drop between the upstream and the downstream of the 
channel/tube  

Q : Flow rate 
R : Flow resistance 
Re : Reynolds number 
T : Tension in the elastic wall 

,u U : Velocity 
v : The tube's radial displacement 

A
ju : Grid velocity 

0U : Inlet velocity 

,i ju u : Velocity components 

W : The strain energy function 
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