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Summary  
 
Mechanical signals are important regulators of cell behavior. Key to understanding their 
role is the fact that cells are able to sense and respond to mechanical signals. In order to 
unravel the interplay between mechanics and biology one needs to embrace 
experimental and computational methods, stemming from engineering as well as 
biological disciplines, and integrate them into an interdisciplinary research field called 
mechanobiology. In this chapter we will first describe the structural and mechanical 
properties of a cell and its components, as these properties will have important 
consequences for the way mechanical signals are converted into a biochemical response. 
Experimental techniques to measure and computational models to capture these 
properties will be highlighted. Once we have addressed some key aspects of cell 
mechanics, we will continue by describing some key mechanisms of how mechanical 
signals can modulate cell behavior. Again, insights from experimental as well as 
computational studies will be reviewed. Given the broadness of the field, we will either 
focus on generic mechanisms, or limit ourselves to a few examples and case studies.  
 
1. Introduction 
 
Mechanical signals are important regulators of organ and tissue development, growth, 
remodeling, regeneration and disease. Key to understanding their role is the fact that 
cells are able to sense and respond to mechanical signals. While the sensory aspect is 
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generally termed mechanosensing, the entire process of sensing mechanical signals and 
converting them into a biochemical response is called mechanotransduction (see e.g. 
Ingber (2008) or its definition in the Medical Subject Headings (MeSH®) of the US 
National Library of Medicine, see http://www.ncbi.nlm.nih.gov/pubmed/). The term 
mechanobiology first appeared in the scientific literature in 1998, and was defined by 
Dennis Carter as the study of how mechanical or physical conditions regulate biological 
processes (Carter et al., 1998). At that time, Carter and co-workers were studying the 
importance of mechanical influences for bone fracture healing. They developed 
mechanoregulation diagrams that relate local mechanical stimuli to skeletal tissue 
regeneration, in this way expressing that the local mechanical environment may favor 
cell differentiation towards specific tissue types. The term mechanobiology was first 
introduced in a study that did not look at mechanotransduction at the cellular level, but 
instead made use of well-established engineering methods to calculate mechanical 
stimuli at the tissue level (such as the finite element method). Similar concepts were 
also reviewed by van der Meulen and Huiskes in a survey article on (tissue) 
mechanobiology of skeletal tissues (van der Meulen and Huiskes, 2002). Nowadays, 
mechanobiology stands for a very interdisciplinary research field that embraces methods 
– experimental as well as computational - from engineering as well as biological 
disciplines, among others to unravel mechanotransduction principles. As such, it is not 
surprising that this book chapter will merge knowledge from both disciplines. 
 
Mechanical loads are present in virtually all organs of the human body in the form of 
gravitational forces. Organ- or tissue-specific loading conditions can e.g. be found in the 
musculo-skeletal systems, where muscle loading is responsible for propulsion of the 
human body, and together with gravitational forces, joint forces and moments determine 
locomotion. It will lead to the mechanical loading, and therefore the development of 
local mechanical stresses and deformations of different tissues, such as bone, cartilage, 
tendon and ligament. Other examples can be found in the cardiovascular system, where 
the pumping action of the heart is responsible for the development of blood flow and 
pressure. Cardiac and vascular tissues will be exposed to pulsating hydrostatic pressures 
and flow induced shear stresses. Other examples are lung tissue, which is cyclically 
stretched during breathing, and dermal tissues, which are exposed to tensile, 
compressive and shearing forces. Interestingly, our senses of hearing and touching are 
also initiated through a mechanical stimulus.  
 
In general, the local mechanical environment at the tissue level will be the consequence 
of the simultaneous action of ‘external’ (i.e. originating from the environment) as well 
as ‘internal’ (i.e. originating from the tissue itself) forces, leading to tissue deformations 
that are governed by the ‘passive’ and ‘active’ (contractile) constitutive properties of the 
cells and tissues respectively (see section 2 for more explanation). As 
mechanotransduction takes place at the cellular and subcellular level, the study of 
mechanobiological processes clearly involves a multiscale approach, where mechanical 
loading needs to be transduced from organ to tissue levels and further down to the 
cellular and subcellular levels. Similar to the tissue level, we will see that for the 
mechanical properties of a cell we can make a distinction between a passive and an 
active component, which will be important for understanding mechanotransduction.  
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Figure 1. Schematic overview of mechanical signals for a cell (cytoplasm = orange, cell 
membrane= pink, nucleus = brown, cytoskeletal filaments = green) in a hydrated (bluish 

background), fibrillar extracellular matrix (ECM fibrils = dark blue). Adhesional 
complexes (red) enable the cell to bind to ECM fibrils. Cytoskeletal filaments are 

connecting adhesional complexes to the nucleus. External loads lead to matrix stresses 
(σ = normal stress, τ   = shear stress; thick, dark blue arrows) and strains, as well as 

interstitial fluid pressures ( p ; light blue arrows) and fluid velocity fields ( v ; thin, dark 
blue arrows). Tissue deformation can be sensed by the cell through adhesional 

complexes, which can be further transduced to cytoskeletal filaments (filamentous 
forces f ; green arrows) down to the nucleus. Fluid velocity fields can lead to drag 
forces on ECM fibrils as well as cellular components (cell membrane, adhesional 

complexes), which again may be further transduced via adhesional complexes. 
Extracellular fluid pressure may be transduced through the cell membrane to the cell’s 
cytosol and organelles. Apart from mechanical signals, induced by external load, the 

cell’s cytoskeletal filaments (through acto-myosin interaction) can exert active, 
contractile forces (f; green arrows) on the ECM, which are transduced via adhesional 

complexes. 
 
A biological system aims at maintaining certain microenvironmental variables at a 
constant level, a property which is termed homeostasis. In order to do so, the system 
must possess negative feedback mechanisms that enable to respond to a deviation from 
the normal (i.e., homeostatic) values of microenvironmental variables, in a way to 
restore these to the homeostatic values. Well known examples are the regulation of body 
temperature, blood pH and glucose levels. Interestingly, load-bearing tissues seem to be 
characterized by homeostasis of mechanical quantities such as stress or strain, meaning 
that a deviation from a certain ‘homeostatic’ stress/strain level will induce tissue 
remodeling or adaptation in order to restore the mechanical integrity (i.e., the respective 
level of stress/strain). Such a behavior can be mathematically translated into a simple 
first order system: 
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0( )dm C
dt

ψ ψ= −          (1) 

 
where m  is a tissue property (e.g. tissue mass, a geometrical or mechanical property), t  
is time, ψ is a variable accounting for the local mechanical environment, 0ψ  is its value 
at homeostasis and C  is a rate parameter. The concept of stress homeostasis has proven 
to be very useful for a phenomenological description of tissue remodeling (adaptation) 
in various tissues, such as the intervertebral disc (Adams and Dolan, 2005), bone 
(Turner, 1998) or vascular tissues (Humphrey, 2008). As to arterial tissues it is well 
known from in vivo observations that an increase of blood flow (and therefore flow 
induced shear stress) leads to an arterial enlargement (without wall thickening), while a 
decreased blood flow (and shear stress) leads to a decrease of lumen diameter (by means 
of wall thickening at the inner layer, i.e. the intima) (Masuda et al., 1999). Taking wall 
shear stress as the driving mechanical stimulus and assuming that there exists a 
homeostatic shear stress value, it becomes clear that for both an increase as well as a 
decrease of blood flow, the tissue response aims at restoring stress homeostasis, and can 
therefore be captured by Equation 1. Clearly, this equation does not reveal anything on 
the cellular mechanisms that underlie this response. In vitro experiments are a powerful 
tool to study these mechanisms, in this case by culturing endothelial cells (the cells that 
line blood vessels) in vitro, and exposing them to controlled regimes of shear stress. 
Such experiments have clearly demonstrated that endothelial cells are responsive to wall 
shear stress (for a review see e.g. Ando and Yamamoto (2009)), among others by 
changing their synthesis of nitric oxide (NO), an important regulator of the activity of 
smooth muscle cells, which are the cells that are responsible for intimal thickening. The 
response of endothelial cells to wall shear stress has been found to be a key factor to the 
growth and destabilization of arterial plaques in atherosclerosis (Slager et al., 2005). 
This example shows the importance of mechanobiology for understanding tissue 
physiology (arterial remodeling) and pathophysiology (atherosclerosis), and the need 
for an integrative approach that combines in vivo, in vitro and in silico work. The latter 
enables to quantify the mechanical environment and to formulate a quantitative relation 
between this mechanical environment and a biological response (Humphrey, 2008). For 
an overview of other diseases where aetiology or clinical presentation is associated to 
abnormalities in mechanotransduction the reader is referred to the review by Ingber 
(2003). 
 
Prior to describing how mechanical signals can be converted into a biochemical signal, 
it is a good starting point to first focus on the mechanical properties of a cell and its 
components, as these properties will have important consequences for 
mechanotransduction. We will therefore start with a description of the complex 
structural and mechanical behavior of the cell, and the way to measure and model 
different aspects of this behavior. Once we have established a cell mechanical basis, we 
will move to cell mechanobiology, present key players of mechanotransduction and 
examples of computational models of cell mechanobiology. Because of the broadness of 
the field, it is clearly not possible to give a comprehensive overview. We will therefore 
either focus on generic mechanisms, or limit ourselves to a few examples and case 
studies. Often, the reader will be referred to review papers that cover certain aspects into 
more detail.  
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2. Cell Mechanics 
 
2.1. Overview 
 
An integrated knowledge of cell mechanics is essential for understanding fundamental 
cellular processes, such as migration, shape stability, proliferation and differentiation. 
Taken together, these processes are responsible for the maintenance and regulation of 
physiological and pathophysiological behavior of biological tissues. To explain the 
dynamic and functional role of cells interacting with tissues, it is essential to determine 
the mechanical properties of cells.  
 
Cell mechanical characteristics are very complex. The cell is a viscoelastic material 
similar to a viscous fluid (Desprat et al., 2005). Cell viscoelasticity is commonly 
evaluated through the complex shear modulus *G G iG′ ′′= + , which is defined as the 
complex ratio in the frequency domain between the applied stress and the resulting 
strain (Ferry, 1980). The real part (G′ ) is called storage modulus and accounts for the 
elastic contribution, whereas the imaginary part (G′′ ) is known as loss modulus and 
represents the dissipative contribution. Dynamic measurements of *G  have revealed 
that the viscoelastic behavior of living cells is timescale dependent (Fabry et al., 2001; 
Stamenovic 2006). Moreover, cell stiffness presents a high variability depending on the 
conditions and the measurement techniques, varying even several orders of magnitude 
being, in fact, in the order of tens to thousands of Pascals (Stamenovic and Wang, 
2000). Another relevant characteristic of cells that is normally accepted in the literature 
is that they are a tensed/prestressed structure. In fact, there are filaments that bear a pre-
existing tension even in the absence of external loading. Recent results have confirmed 
that inside the cell there is a filamentous network under tension: when these fibers are 
cut with a laser, they snap back (Kumar et al., 2006). This internal tension is due to 
molecular motors that generate forces transmitted by the cell to the extracellular matrix 
(ECM) (Wang et al., 2001). This internal prestress highly modifies the cell stiffness and 
its viscoelastic behavior. Therefore, the cell is characterized by a dual and interactive 
behavior: as passive material and active contractile system. The question that still 
remains unanswered is: which is the factor that regulates the value of this pre-stress 
within the cell? It seems that the concentration of certain solutes, specifically calcium 
ions, could control the value of this pre-stress in smooth muscle cells (Stålhand et al., 
2008). As will be discussed below, this prestress is also highly important for explaining 
mechanotransduction phenomena. Another relevant property of cells is their ability to 
continually rearrange, disassemble and reform its local structures in function of the 
functionality of the cell in a specific process such as migration, contraction, 
proliferation and differentiation.  
 
The mechanical properties of the cell are largely determined by four main components 
with a different contribution: the cytoskeleton (CSK), the membrane, the cytosol and 
the nucleus. The cytoskeleton (CSK) is a complex, heterogeneous and filamentous 
structure that extends from the nucleus to the cell membrane providing a continuous and 
dynamic connection between almost all cellular structures, defining the most significant 
mechanical characteristics of a cell. In fact, the CSK constitutes the dynamic skeleton of 
the cell from which the cell is able to change its shape, coordinate its movements, exert 
mechanical forces and sense the extracellular environment. It consists of a biopolymer 
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network consisting of three major components (see Table 1): filamentous actin (F-
actin), intermediate filaments and microtubules. These cytoskeletal polymers are at 
length-scales (a few microns at most), all corresponding to semiflexible polymers. The 
thermal fluctuation of one-dimensional semiflexible polymers or filaments is governed 
by their bending energy and can be characterized using the concept of persistence length 

pL . In the absence of thermal fluctuations at zero temperature filaments are straight 
because of their bending rigidity ( bK ). Sufficiently large and thermally fluctuating 
filaments lose their straight conformation. Only subsystems with contour length pL L  
appear rigid and maintain an average straight conformation. Larger filaments pL L , 
on the other hand, appear flexible. In the ‘semiflexible’ regime for which L  is 
comparable to pL , statistical mechanics is governed by the competition of the thermal 
energy T  and the bending rigidity. In Table 1, we list the persistence lengths and 
bending rigidities associated to the polymers that constitute the cell CSK (Mofrad and 
Kamm, 2006). 
 

 Diameter 
(nm) 

Persistence 
length (μm) 

Bending 
stiffness 
(Nm2) 

Young’s 
modulus 

(Pa) 
Actin filament 6-8 15 7x10-26 1.3-2.5x109 
Microtubule 25 6000 2.6x10-23 1.9x109 
Intermediate 
filament 

10 1-3 4-12x10-27 2-5x106 

 
Table 1. geometrical and mechanical properties of cytoskeletal components 

 
F-actin is the main component that regulates the mechanical behavior of the cell. In fact, 
its depolymerization implies a significant decrease in cell stiffness (Fabry et al., 2003; 
Trepat et al., 2005; Smith et al., 2005). In vitro experiments of reconstituted F-actin 
networks showed that tension sustained by the filaments plays a critical role in the 
network rheology (Gardel et al., 2006). Actin bundles can bind to myosin, a motor 
protein able to move the bundles relative to each other by hydrolyzing adenosine 
triphosphate (ATP), creating what is known as a stress fiber, which is a structure able to 
support forces in the cell. Therefore, actin filaments in conjunction with myosin are the 
main force-generating mechanisms of the actin CSK, playing a crucial role in the active 
behavior of the cell. Microtubules and intermediate filaments define the main passive 
behavior of the cell. Ingber (2003) proposed that cells are prestressed tensegrity 
structures with internal molecular struts and cables, with microtubules being effective at 
withstanding compression (the struts), and actin filaments being more adequate for 
working under tension. He hypothesized this theory based on the fact that microtubules 
often appear to be curved in living cells, whereas intermediate filaments are almost 
always linear. This is consistent with the engineering rule that tension straightens and 
compression buckles or bends the bar elements. 
 
These elements that constitute the CSK create a crowded network of structural proteins 
that regulates cell shape and drives cell motions, being able to modify and orient this 
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filamentous structure in function of the mechanical and functional needs of the cell in a 
process known as CSK remodeling (Bursac et al., 2005). 
 
The cell membrane is the layer that separates the cell interior from the extracellular 
environment. It is formed by a double layer of phospolipid molecules in which proteins 
are embedded. One of the main functions of the cell membrane is to regulate molecular 
transport between the cell interior and the extracellular environment. On the other hand, 
the cell membrane also has a mechanical function, by resisting bending and regulating 
cell shape.  
 
The cytoplasm is formed by the cell content enclosed within the cell membrane and 
outside the nucleus. Apart from the CSK, the cytoplasm is formed by the cytosol, which 
is an aqueous solution formed by a myriad of proteins and molecules that fill the 
compartments of the cytoplasm. 
 
The nucleus is constituted by two concentrated lipid membranes containing the DNA 
molecules that encode the genetic information. The CSK biopolymers surround the 
nucleus in a much higher density than in other cellular regions. In fact, actin and 
vimentin filaments have been reported to mediate force transfer to the nucleus (Maniotis 
et al., 1997) with important consequences in gene expression (see also below). The cell 
nucleus have been reported to be 10-fold stiffer than the surrounding cytoplasm 
(Maniotis et al., 1997; Gerace and Huber, 2012). Therefore, the nucleus could play an 
important role in the mechanical stabilization of the cell (Versaevel et al., 2012) 
 
2.2. Experimental Techniques to Measure Cell Mechanical Properties 
 
In order to study the complex mechanical behavior of cells dedicated methodologies 
have been developed, as described in several review papers (Bao & Suresh 2003; Kasza 
et al., 2007). One of the complicating aspects is to distinguish between the cell’s active 
and passive behavior.  
 
In order to evaluate how living cells behave in an active way exerting physical forces, 
micron-sized probe particles are embedded within the cell or in the surrounding 
substratum in specific positions to compute the fluctuations in their position as a 
consequence of cell activity. Particle tracking microscopy (PTM) consists on measuring 
the motion of probe particles, through video or laser tracking techniques, allowing to 
study the non-equilibrium phenomena associated to different processes such as thermal 
fluctuations, the activity of motor proteins, cytoskeletal remodeling, etc. (An et al., 
2004; Bursac et al., 2005; Lenormand et al., 2007). Traction Force Microscopy (TFM) 
techniques (Butler et al., 2002; Sabass, et al., 2008; Legant et al., 2010) are based on the 
substrate deformation and are used to study the relationship between adherent cells and 
their underlying substrates.  
 
The passive behavior of the cell as a material is strongly non-linear, which is typically 
found for a soft material, and structurally heterogeneous. This fact requires designing 
local mechanical experiments with a high accuracy in their measurements. The most 
common technique used to evaluate the local viscoelastic properties of a single cell is 
through micro-indentation by Atomic Force Microscopy (AFM) (Sunyer et al., 2009). 
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Since its invention in 1986 (Binning et al., 1986), it is one of the most valuable tools for 
imaging and testing matter at the nanometer scale. AFM consists of a microscale 
cantilever with a tip at its end that allows us to apply local stresses to the cell. The 
cantilever deflection is measured by laser reflection. Alternatively, a local stress can 
also be applied to a specific region of the cell by twisting or pulling a small magnetic 
bead that is attached to the cell (or one of its receptors). In Magnetic Tweezers (MT) or 
magnetic cytometry the resultant bead displacement is measured either with video 
microscopy or, to an even higher precision, with laser particle tracking. MT have been 
widely used to measure the viscoelasticity of cells (Bausch et al, 1998). The viscoelastic 
cell response can also be directly evaluated by deforming the whole cell (Peeters et al., 
2005). Recent experiments demonstrate that the elasticity of a whole cell increases 
dramatically when it is stretched, in agreement with previous tests that related cell 
elasticity to internally generated prestress (Fabry et al., 2001; Wang et al., 2002; Trepat 
et al., 2005) and studies of the nonlinear cytoskeletal behavior (Kollmannsberger and 
Fabry, 2011). These facts imply that active prestress in the cytoskeleton may be a key 
parameter that determines cell elasticity. Therefore, it is difficult in the measurements of 
passive properties of cells to uncouple the effect of active cell properties, because they 
are continuously present.  
 
To evaluate the mechanical properties of the CSK separately, there are in vitro studies 
of reconstituted cytoskeletal networks designed to mimic the properties of individual 
components of the cytoskeleton (Janmey et al., 2007). A major advantage of these 
networks is that their viscoelastic properties can be characterized by traditional 
engineering techniques, evaluating the time-dependent response to an imposed stress or 
strain. 
 
2.3. Computational Modeling of Cell Mechanical Properties 
 
The highly complex mechanical behavior of the cell makes its modeling very 
challenging, rendering it currently impossible to achieve a complete model able to take 
into account all the different known effects under different mechanical conditions. 
Therefore, as in traditional engineering materials, specific constitutive models have 
been defined to capture or reproduce specific phenomena of cells under certain 
mechanical conditions. 
 
Different constitutive models have been presented that describe the mechanics of living 
cells as a simple elastic, viscoelastic or poro-viscoelastic continuum (Mofrad and 
Kamm, 2006, Lim et al., 2006), as a porous gel or soft glassy material (Fabry et al., 
2001; Bursac et al., 2005; Deng et al., 2006; Mandapu et al., 2008), or as a tensegrity 
network incorporating discrete structural elements that bear compression (Ingber, 2003, 
2008). 
 
Continuum models present several limitations (Mofrad and Kamm, 2006): they 
normally lack a description of the cytoskeletal fibers and also exclude small Brownian 
motions caused by thermal fluctuations of the cytoskeleton, which have been shown to 
play a key role in cell motility (Mogilner and Oster, 1996). 
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