
BIOMECHANICS - Biomechanics: Applications In Orthopedics - Luca Cristofolini 

©Encyclopedia of Life Support Systems (EOLSS) 

BIOMECHANICS: APPLICATIONS IN ORTHOPEDICS 
 
Luca Cristofolini 

Dipartimento di Ingegneria Industriale, Università di Bologna, Italy 
 
Keywords: Orthopedics, musculoskeletal system, movement analysis, joint forces, joint 
kinematics, implantable devices, prostheses, orthoses, in vitro testing, Finite Element 
methods, total joint replacement, fixation devices, pre-clinical validation. 
 
Contents 
 
1. Introduction 
2. Biomechanics of the musculoskeletal system 
3. Engineering tools for organ-level and tissue-level biomechanical investigations in 
orthopedics 
4. Biomechanics of orthopedic devices 
5. Future directions in orthopedic biomechanics 
Acknowledgments 
Glossary 
Bibliography 
Biographical sketch 
 
Summary 
 
This chapter summarizes the application of biomechanics in orthopedics. An overview 
is provided of the applications of biomechanics to basic science. This includes 
understanding how the musculoskeletal system works and moves; measuring indicators 
of movement that can describe the state of health/disease of a subject; building models 
of the entire musculoskeletal system (or of a portion of it) to describe, interpret and 
predict its function under different conditions; measuring the mechanical and structural 
properties of organs of our musculoskeletal system alone, and in presence of an 
orthopedic device. Descriptions of the tools that can be used in vitro and in silico to 
measure/predict the most relevant mechanical quantities (forces, moments, strain, 
displacement, strength, mode of failure) in bony structures are provided. In the last part, 
the most applicative role of biomechanics is described: design and validation of 
orthopedic devices is an extremely relevant issue (both to manufacturers, practitioners 
and patients), which involves a great deal of biomechanical experiments and 
simulations. 
 
1. Introduction 
 
In this chapter the role of biomechanics in orthopedics is discussed. There are several 
possible ways of classifying applications of biomechanics in the field of orthopedics. 
One possible classification relates to the scopes: some activity is directed to the 
understanding of the basic principles of our musculoskeletal system, i.e. it relates to 
basic research, and is typically carried out at non-profit and/or public-funded research 
institutes. Other applications relate to the design and/or validation of implantable 
devices, i.e. it consists of applied research and is typically performed by Research and 
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Development industrial departments, or by public research institutions upon request of 
industrial partners. In the following pages, the role of Biomechanics in these two fields 
is summarized. 
 
2. Biomechanics of the Musculoskeletal System 
 
To understand the biomechanics of the musculoskeletal system, one must consider both 
its components, and how they interact with each other. While in the past such elements 
have in most cases been considered separately, the current state of our knowledge and 
the simulations recently developed make it possible (and almost mandatory) to take an 
integrated multidisciplinary approach, where each element is considered in its 
multiscale contexts (see Multiscale modeling of human pathophysiology). 
 
2.1. The Components of the Musculoskeletal System 
 
The components of the musculoskeletal systems are organs such as (Fig. 1): 
 

 
 

Figure 1. Main elements of the musculoskeletal system: the lower limb is taken as a 
representative instance. On the left, the lower limb is seen frontally. On the right details 

are shown for the knee structures. 
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• The muscles, which are the “engines” of our musculoskeletal system, with their 
ability of generating forces; 

• The skeletal bones; 
• The articular cartilages, covering the extremities of the bones, and allowing low-

friction motion between bones; 
• The ligaments (linking the bones to one another); 
• The tendons (linking the muscles to the bones). 
 
The mechanical properties and the architecture of the tissues and organs involved are 
extremely important in determining the whole-body musculoskeletal biomechanics 
(movement, etc). Such properties are not discussed here, as they are dealt with in more 
detail in other Sections of this book (see Hard tissue biomechanics and Biomechanics of 
soft tissues). 
 
2.2. Measuring Kinematic and Dynamic Parameters in the Musculoskeletal System 
 
Musculoskeletal models have been implemented in a variety of forms in conjunction 
with experimental measurements. Such experimental data are used both as a diagnostic 
tool (e.g. for understanding the health conditions of a patient), or to be incorporated into 
numerical models (e.g. to calculate of skeletal loads (muscle and joint forces) or to 
validate of model predictions). The basis of any biomechanical model is the 
measurement of the forces/moments involved. However, this is an extremely difficult 
task, as will be discussed in the following. 
 
Direct in vivo measurement of the forces exerted by the muscles or transmitted by the 
tendons has been attempted for several decades, with very limited results, because of the 
difficulty of interposing an accurate transducer in the musculoskeletal system (Fleming 
and Beynnon, 2004). One option is that of implanting a miniature transducer in the 
tendon or ligament: this solution is extremely invasive and questionably accurate 
(because of the structural modifications associated with the implantation procedure). An 
alternative option relies on the use non-invasive tools such as ultrasonography, 
magnetic resonance imaging (MRI): while this approach has fewer ethical and practical 
implications, its accuracy is extremely low. 
 
The state of stress/strain faced by skeletal bones during physiological activities has been 
measured in the past by means of strain gauges attached to the bone surface (Lanyon et 
al., 1975) (Caler et al., 1982). Alternative methods include extensometers and 
instrumented bone staples attached tot eh bone surface in vivo (Yang et al., 2011). Most 
studies focused on the tibia, which is more easily accessible. Such studies can elucidate, 
for instance, the case of stress fractures due to excessive cyclic load (Milgrom et al., 
2002). The effect of different activities can be compared in terms of strain induced in 
the bones (Al Nazer et al., 2012). However, the actual force transmitted is never 
actually measured with this approach. In addition, this is a very invasive measurement 
as it involves surgery to access the bone surface, and attachment of a sensor onto the 
bone surface itself. Due to its technical limitations, together with obvious ethical 
implications, this approach has been abandoned. 
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Figure 2. Examples of loading profiles measured in vitro using telemetric implants. 
TOP: loading in the hip joint during gait (3 steps). BOTTOM: loading in the shoulder 

while lifting a coffee cup (reproduced from http://www.orthoload.com/). 
 
In vivo direct measurement of joint forces is possible when a patient is treated with a 
total joint replacement. In fact, different telemetric prostheses have been designed and 
implanted, which enable measuring one or more force component in the operated limb, 
and transmit such information to a data logger through a telemetric system (Davy et al., 
1988; Graichen and Bergmann, 1991; Taylor et al., 1997). However, this approach is 
limited to patients undergoing total joint replacement (hence, it is not necessarily 
representative of healthy subjects) and, due to costs, has been obtained on very small 
groups of patients (hence, the measured quantities cannot be representative of a large 
population). Despite such limitations, telemetrically measured joint forces (Taylor et al., 
1998; Bergmann et al., 2001; Taylor and Walker, 2001; Bergmann et al., 2004; Kirking 
et al., 2006) constitute an invaluable resource to understand how the musculoskeletal 
system works, to design pre-clinical validation methods for implantable devices, and to 
validate musculoskeletal models (see below). One of the most extensive databases of 
telemetrically measured joint forces at the different anatomical joints has been made 
available to the public domain (Fig. 2) by the research group of Bergmann and 
Rohlmann, in Berlin (http://www.orthoload.com/). 
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Alternatively, muscle activity can be measured in vitro using electromyography (EMG, 
(Bronzino, 2006)). EMG relies upon measurement of the electrical signal associated 
with muscle activity, which can be either collected using needles (local measurement, 
more invasive) or surface electrodes (less invasive, but providing a worse signal. EMG 
measurements are affected by large errors (e.g. noise, crass-talk between neighboring 
muscles). For these reasons, EMG is suitable to detect the timing of activation in a 
binary way (on-off) rather than actually measuring the force exerted by the single 
muscle. 
 
Human movement analysis allows gathering quantitative information about the 
mechanics of the musculoskeletal system during motor tasks. Quantification of human 
motion incorporates an amount of directly measured quantities (e.g. motions and 
accelerations of the different segments, ground reaction forces) and numerical models 
describing the relationship between the segments. More details about the methods of 
movement analysis can be found elsewhere (see Biodynamics and Human motion). The 
following quantities can be obtained, which can be used as an input for biomechanical 
musculoskeletal models: instantaneous positions of markers located on the skin surface 
using stereophotogrammetry (motion capture), external forces using dynamometers 
such as force plates, electrical activity of muscles using electromyography (EMG). 
Marker locations are necessary for the calculation of joint kinematics with different 
approaches (e.g., inverse kinematics), which, in conjunction with the measured external 
forces are used for the calculation of joint torques, representing the resultant action of 
all muscles crossing a joint, through inverse dynamics methods. EMG recordings are 
typically used for EMG-driven models or for validation purposes by comparison with 
predicted muscle activations. 
 
All such kinematic and dynamic variables are strongly subject dependent. In fact, the 
motion patterns, and the associated loading profile, exhibit a highly personalized trend, 
in relation to individual anatomy, motor strategy, habits, neuro-motor control, diseases, 
etc. 
 
2.3. Modeling the Musculoskeletal System 
 
A deep knowledge of the loads acting on the skeletal system during human movements 
may have significant clinical implications and could help improving the diagnosis, 
planning and treatment in several orthopedics and neurological contexts. Muscle and 
joint function analyses can be performed when the following information is 
simultaneously available: body-segmental motion, external forces applied to the body, 
accurate knowledge of muscle and joint loads. Therefore, a valuable solution for 
analyzing internal loads in living subjects is represented by the prediction through 
computational models of the musculoskeletal system driven by the biomechanical 
quantities that can be measured in vivo (see above). Musculoskeletal models can be: 
 
• Generic, i.e. based on an average anatomy, identified to represent a chosen 

population: such models are suitable for predicting general trends, effects of 
different motor tasks etc. Such models can be extremely useful in basic research 
about musculoskeletal function. 

 305  



BIOMECHANICS - Biomechanics: Applications In Orthopedics - Luca Cristofolini 

©Encyclopedia of Life Support Systems (EOLSS) 

• Subject-specific, i.e. based on the anatomy of an individual subject: such models can 
predict what happens in a given subject, with his/her anatomy, disease, etc. These 
models are the best candidates for use in clinical applications.  

 
2.3.1. Modeling Applications  
 
Thanks to the steady increase in computing power, in combination with more efficient 
and reliable modeling strategies, the development of musculoskeletal models is 
continuously improving, with a wide range of applications in biomechanical problems.  
 
For instance, modeling approaches were adopted to study how muscle geometry affects 
the joint moment-generating capacity (Lenaerts et al., 2008; Valente et al., 2012), how 
muscle moment arms and lengths are altered by surgical procedures (Delp et al., 1994), 
or to evaluate potential of muscles to accelerate the body segments during movement 
(Liu et al., 2006). However, the most common and challenging application is 
represented by the estimation of actual forces transmitted by the muscles and joints 
during movement (Erdemir et al., 2007; Pandy and Andriacchi, 2010), since such loads 
are related to several clinical scenarios. Some important aspects are represented by the 
prediction of clinical outcomes after total joint replacements (joint function, bone 
remodeling, primary stability, muscular dysfunction) (Claes et al., 2000; Bitsakos et al., 
2005), planning of surgical and rehabilitation treatments for gait-related disorders 
(cerebral palsy, stroke, osteoarthritis) (Arnold and Delp, 2005; Steele et al., 2012; 
Taddei et al., 2012), understanding the osteoporotic fractures (Viceconti et al., 2012).  
 
2.3.2. Modeling Development and Simulation Methods  
 
Models (including biomechanical ones) are simplified representations of a more 
complex reality. Because of their nature, it cannot be for granted that models predictions 
are representative of reality. For this reason, all models need to undergo a systematic 
verification and validation procedure (Babuska and Oden, 2004). 
 
When dealing with multibody-dynamics models of the musculoskeletal system, what 
should be included in the model depends on the purpose of the model itself. When the 
overall goal is to analyze the biomechanics of movement and the skeletal loads, bone 
segments can be described as rigid bodies, connected by ideal joints and moved by 
muscle-tendon actuators (Fig. 3). The model identification process involves several and 
fairly complex operations, unless generic models based on average geometry derived 
from suitable population studies are adopted and scaled onto specific anthropometries. 
A framework commonly adopted for the prediction of muscle and joint loading in 
human movement includes musculoskeletal models in conjunction with body-segmental 
and ground reaction force measurements and inverse or forward dynamics methods.  
 
Inverse dynamics is based on gait analysis measurements applied to a recursive 
Newton-Euler algorithm to calculate the net joint moments exerted. Then, muscle forces 
are calculated by applying optimization methods to solve an indeterminate problem, 
under the hypothesis that the human body adopts some optimal performance criterion. 
For example, common objective functions are the sum of the squares of muscle stresses, 
or the sum of the squares of muscle activations. Static optimization allows muscle force 

 306  



BIOMECHANICS - Biomechanics: Applications In Orthopedics - Luca Cristofolini 

©Encyclopedia of Life Support Systems (EOLSS) 

calculation by minimizing an objective function under the constraints of mechanical 
equilibrium at the joints and physiological limits for muscle tensions. 
 

 
 

Figure 3. Main parts of a musculoskeletal model for simulations of the dynamics of 
human movements 

 
Since the true performance criterion is generally unknown, EMG-driven models are 
sometimes adopted to calculate muscle forces without relying on optimization. This 
approach, based on EMG measurement of muscle activity, presents important 
limitations since EMG data are not always available, particularly for deep muscles.  
 
Forward dynamics constitutes a marked different method, since muscle forces are 
calculated by integrating the equations of motion forward in time using neural 
excitation signals as inputs. However, this dynamic optimization approach suffers from 
high computational cost and leads to comparable results with inverse dynamics 
solutions, making it a non-appealing method for the simulation of daily activity tasks. 
 
A more efficient implementation of the forward method is to solve a parameter-
optimization problem, in which muscle forces are calculated from an optimization 
problem while tracking a desired set of joint kinematics. This approach already found 
implementation in state-of-the-art software for musculoskeletal dynamics (Delp et al., 
2007). 
 
2.3.3. Subject-Specific Modeling and Challenges  
 
Since biological tissue properties, anatomy and overall neuro-motor control and strategy 
can vary substantially among subjects, these differences may affect the prediction of 
model kinematics and dynamics entities. Currently, most models are generic 
musculoskeletal models, with few attempts to use patient-specific models for dynamics 
simulations in abnormal conditions. However, recent research has shown the relevance 
(and feasibility) of subject-specific models, since an appreciable influence of 
musculoskeletal geometry was found on model predictions (Scheys et al., 2008; Correa 
et al., 2011). However, the creation of subject-specific models requires more expertise, 
a larger amount of information, and represents an expensive process in time and effort 
compared to generic ones. 
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Indeed, to be effective in a clinical context, the methods that need to be developed to 
gather the necessary information should satisfy requirements of applicability. The 
adopted methods should satisfy ethical and technological constraints, while requiring 
limited time and operator interaction. Typically, models are created from clinical 
images (CT and MRI) and gait analysis measurements: data for musculoskeletal 
geometry needs to be extracted and some information cannot be always collected in the 
clinical practice.  
 
Because of the limited amount of quantitative in vivo data available about internal 
forces, a thorough validation of model predictions is still unfeasible. Validation remains 
a major challenge faced by musculoskeletal modeling, and highlighting the need of a 
deep understanding on the sensitivity of model predictions to the modeling hypotheses 
and the uncertainties associated to each of the large amount of parameters involved. 
This, in conjunction with the mentioned limitation on subject-specific modeling, 
represents a constraint for current applicability of personalized musculoskeletal model 
into clinical contexts. However, the field is increasingly growing and represents an 
important resource for computer-aided medicine challenges. Recently, significant steps 
towards the improvement and speeding up of personalized modeling have been made. 
 
3. Engineering Tools for Organ-Level and Tissue-Level Biomechanical 
Investigations in Orthopedics  
 
3.1. The Role of In Vitro Experiments  
 
In a historical perspective, implantable devices have originally been tested pre-clinically 
in vitro, long before computer models could provide truly relevant information. The 
advantage of in vitro testing is that a real specimen (including a physical prototype and 
possibly a bone segment) is subjected to real loads. This brings results from in vitro 
experiments closer to “reality” compared to other approaches such as numerical 
modeling.  
 
If we exclude the tests on the implantable device alone, which are often regulated by 
internationals standards, in vitro experiments focus on the biomechanical function of the 
device when implanted in the host bone(s). Therefore, in vitro tests often include bone 
segments. These can either be synthetic bone replicas, or animal bones, or human 
cadaveric specimens. Synthetic models (usually made of composite material) offer the 
advantage of being highly reproducible, available in large numbers, easy to handle, and 
relatively inexpensive. Synthetic models suffer from some limitations: (i) their high 
reproducibility makes them unsuitable to represent the variability among subjects; (ii) 
while they are designed to provide similar mechanical properties in the elastic range, 
they have quite a different behavior when loaded to failure. Animal tissue specimens are 
relatively easy to obtain from food supply (conversely, breeding animals for testing 
purposes is subjected to strict ethical rules), and they have mechanical properties that 
are similar to human bone. However, in most cases the anatomy and the structure are 
different from human bone because of the biomechanical function of such animals 
(mostly quadrupeds) compared to humans. Such limitations make synthetic bones and 
animal bones suitable for an early stage of pre-clinical validation, but not for the final 
phases where similarity to the patient bone is essential. For this reason, at some stage 
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