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Moving surfaces in various machines and live organisms are exposed to external 
loading and are subjected to normal and frictional stresses which, to a certain extent, 
limit their useful life. In most cases these joints are lubricated one way or another. 
Therefore, the parameters such as lubricant viscosity, normal stresses, lubrication film 
thickness and contact friction are the keys to the longevity of the joints. That 
necessitates studying of lubricated contacts. Some history of the developments in the 
hydrodynamic and elastohydrodynamic lubrication (EHL) theories is presented. This 
essay covers the most fundamental problems of the EHL theory. Specifically, some new 
insights in the stress-induced lubricant degradation are presented, a simple steady 
isothermal problem for lightly loaded EHL contact with Newtonian lubricant is 
considered, some steady isothermal and thermal problems for line and point heavily 
loaded EHL contacts lubricated with Newtonian and non-Newtonian lubricants are 
studied, modeling of grease lubrication is considered. The approach employed to 
studying these problems is the analysis of the problem by analytical asymptotic 
techniques which is followed by numerical solution of the asymptotically simplified 
problem. The asymptotic approach to EHL problems allowed for development of an 
effective regularization numerical method for solution of the isothermal EHL problems 
in the original (non-asymptotic) formulations. 
 
1. Introduction 
 
Moving parts in machinery and live bodies involve different kind of lubricated joints. 
Lubrication of these joints serves several purposes: separation of contact surfaces, 
reduction of friction between the contact solids, reduction of wear, retardation of other 
forms of contact fatigue such as pitting, flaking, delamination, scuffing, etc. Therefore, 
it is crucial for machine design to be able to determine lubrication film thickness and 
contact friction. Lubricated joints involve contacts which can be classified as conformal 
and non-conformal contacts. Conformal contacts of solids are those in which the area of 
the contact is comparable is size with the sizes of the solids. Examples of such joints are 
represented by human and animal joints, journal and spherical bearings. On the other 
hand, joints involving non-conformal contacts are represented by roller and ball 
bearings, gears, etc. The size of the contact area in non-conformal contacts is much 
smaller than the curvature radii of the contact solids. Utilization of specific bearings or 
gears depends on the loading, lubrication, and environmental conditions. It means that 
some joints are lubricated by fluid lubricants while others by greases or solid lubricants. 
Usage of solid lubricants which are introduced into joints as thin coatings is typical for 
vacuum applications. The most often used solid lubricants are based on MoS2 
(molybdenum disulfide) and DLC (diamond-like-carbon) coatings. Greases are usually 
applied in cases when it is impractical to provide fluid lubrication due to the joint design 
and its application or economically ineffectiveness. Greases are made on the basis of 
different thickeners/soaps (aluminum, sodium, calcium, lithium, etc.) saturated with 
various oils. The most often choice for lubrication is fluid lubrication. 
 
Lubricant behavior is controlled by its rheology which is the reflection of the lubricant 
structure. In most cases fluid lubricants are almost incompressible. The rheology of a 
lubricant is determined by the stress-strain relationship. The simplest lubricant rheology 
is Newtonian which is characterized by a linear dependence between shear stresses and 
strains. However, in most practical situations Newtonian rheology is just a simple 
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idealization. In practice, lubricants exhibit various features of non-Newtonian rheology. 
All greases have features of non-Newtonian rheology. Most of fluid lubricants also 
exhibit non-Newtonian behavior. Some rheological models of such lubricant behavior 
are represented by Ostwald-de Waele, Reiner-Philippoff-Carreau models and can be 
found in [Bair, 2007]. Contemporary formulated lubricants are base stock solutions of 
various additives. These additives serve such roles as viscosity improvers, corrosion 
inhibitors, EP (extreme pressure) additives used for wear protection under mixed and 
boundary lubrication conditions, etc. Lubricant viscosity is a part of any rheological 
model. In many lubricated joints pressure reaches high levels. Therefore, it is essential 
to know lubricant behavior at high stresses and under fast changing conditions. A 
significant progress in studying high pressure lubricant rheology and lubricant viscosity 
is done in [Bair, 2007].  
 
For many lubricants their viscosity significantly increases with pressure and decreases 
with temperature. Contact solid surfaces moving with different linear speeds as well as 
high pressure are conducive for occurrence of high shear stresses. Shear stresses cause 
stress-induced lubricant degradation, raise of lubricant temperature, variation in 
lubricant friction which depends on the surface roughness and lubrication film thickness 
separating the contact surfaces, oxidation processes, etc. Lubricant degradation causes 
permanent loss of viscosity while lubricant oxidation usually increases its viscosity. 
This lubricant behavior is one of the manifestations of lubricant non-Newtonian 
rheology. 
 
Depending on the loading and speed conditions, elastic moduli of the materials of 
contact solids as well as the contact size and lubricant viscosity a lubrication regime is 
lightly or heavily loaded. In lightly loaded lubricated contacts surface deformations are 
negligibly small and the situation is closely described by the behavior of lubricant 
between two moving rigid solids [Kudish and Covitch, 2010]. Such lubrication regimes 
are usually associated with hydrodynamic lubrication. In cases of heavily loaded 
lubricated contacts the situation is opposite. In the central part of the contact the 
pressure distribution is close to the one in a dry contact of the same solids (Hertzian 
pressure) and elasticity effects dominate the behavior of the lubricated contact while the 
film thickness between the contact surfaces is small and practically constant. These are 
usually referred to elastohydrodynamic lubrication (EHL) regimes. At the same time, in 
the zones close to contact boundaries the contribution of the lubricant flow and contact 
solid elasticity are comparable [Kudish and Covitch, 2010]. The conditions when the 
lubrication film thickness is comparable to the height of surface asperities are usually 
referred to as regimes of mixed friction. The lubrication conditions in which the most of 
the applied load is carried by contacts of surface asperities are called regimes of 
boundary friction. 
 
The realization of the above lubrication regimes to a great extent depends on the amount 
of lubricant supplied to contact. If the amount of lubricant entering contact is relatively 
low then starved lubrication conditions occur. When the amount of lubricant supplied to 
contact is abundant a lubricated contact is in a fully flooded lubrication regime. The 
other contact parameter which affects lubrications regime is the lubricant temperature. 
The lubricant temperature is determined by the applied load, surface speeds, lubricant 
viscosity as a function of lubricant pressure and temperature, elastic and thermal solid 
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material parameters, and lubricant thermal parameters. The lubricant temperature, in 
turn, significantly affects friction in the contact. For relatively low temperatures a 
contact may be in a fully flooded lubrication regime while for high temperatures the 
same contact with the same lubricant supply may be in missed lubrication regime. 
Finally, contact friction is one of the main parameters affecting wear, pitting and other 
contact fatigue phenomena.  
 
In certain cases lubricated contacts are involved in non-steady conditions and their 
lubricated contact parameters are generally involved in oscillations. The difference 
between a non-steady and the corresponding steady parameters for the same lubricated 
contact can be significant. For example, the ratio of the maxima of contact pressure in 
non-steady and steady contacts can exceed threefold. A great role in this difference 
between steady and non-steady lubricated contact parameters plays the inertia of the 
contact, i.e. the masses of the solids involved in the motion. 
 
Often, real lubricated joints are idealized. For example, a lubricated contact of a roller 
with a bearing ring can be described as a contact of an infinite cylinder/roller made of 
an elastic material with an elastic half-plane, i.e. the EHL problem for such a situation 
can be considered in just two dimensions of the cross section of the roller perpendicular 
to its axis. Such a contact is called a line contact. Moreover, for non-conformal contacts 
the circular shape of the roller can be approximately replaced by the corresponding 
parabola. In case of a contact of a ball with a bearing ring the EHL problem can be 
reduced to a contact of an elliptical paraboloid made of an elastic material with an 
elastic half-space. Such a problem is usually called a point EHL contact. The case of a 
contact of gear teeth also can be reduced to a point EHL problem. 
 
The foundations of the theory of hydrodynamic and elastohydrodynamic lubrication 
were made in ground breaking studies [Petrov, 1883], [Reynolds, 1884], [Sommerfeld, 
1904], [Petrusevich, 1951], and [Ertel, 1945]. In particular, Reynolds presented a simple 
reduction of Navier-Stokes equations for a slow thin flow of viscous Newtonian fluids 
while Sommerfeld received a simple solution of a lubrication problem for a journal 
bearing. The next step in improving the lubrication theory for line contacts was done by 
Petrusevich who introduced elastic displacements of contact surfaces in the problem 
equations and for the first time solved the problem numerically. Ertel, in turn, offered a 
transparent approximate analytical procedure for calculation of lubrication film 
thickness in heavily loaded line contacts when lubricant viscosity (for Newtonian 
rheology) depends strongly on pressure. After that hydrodynamic and 
elastohydrodynamic lubrication problems enjoyed and continue enjoying close attention 
of many researchers. A further advancement in the EHL theory was made in [Jiang, 
Xiaofei et al., 1998] by introducing thermal effects and surface roughness in lubricated 
contacts. In a number of papers [Greenwood, 1972; Archard and Baglin, 1986] some 
advancements in Ertel-type approximate analytical solutions for line EHL problems 
were made. However, various numerical methods remain the prevalent approach to 
solution of EHL problems. Among these numerical methods there are studies based on 
the Newton-Raphson method [Hamrock, 1991], other numerical methods using the 
singularity in the integral equation for the gap [Evans and Hughes, 2000], multilevel 
multi-grid methods [Venner, and Lubrecht, 2000], fast Fourier based methods [Jiang, 
Xiaofei et al., 1998]. Furthermore, there was developed a method [Kudish and Covitch, 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MECHANICAL ENGINEERING - Hydrodynamic and Elastohydrodynamic Lubrication – Ilya I. Kudish 

©Encyclopedia of Life Support Systems (EOLSS) 

2010] which synthesizes the benefits of analytical and numerical approaches to solution 
of EHL problems. The approach is based on combination of regular and matched 
asymptotic expansions and specialized numerical methods.  
 
2. Stress-Induced Lubricant Degradation 
 
Considering stress-induced degradation of polymer additives/viscosity modifiers (VM) 
to lubricants it is important to realize that the chemical and geometrical composition of 
the polymer additive molecules can be different. For example, additive molecules can 
be represented by polymer molecules with linear structure, star polymer molecules, etc. 
Here only the case of linear polymer molecules is considered. These polymer molecules 
as well as star polymer molecules are studied in detail in [Kudish and Covitch, 2010]. 
 
Let a lubricant formulated with VM represented by linear polymer molecules is 
involved in a cyclic motion process during which polymer molecules experience shear 
stresses applied to them. For simplicity we will assume that the polymer molecules are 
stretched along the lubricant flow streamlines described by the equation 
 

( , ),dx u t x
dt

=   (1) 

 
where u  is the lubricant fluid velocity at the point x at the time t . Let us derive the 
kinetic equation describing the process of stress-induced degradation. It is necessary to 
introduce the density of the statistical distribution ( , , )W t x l of polymer molecular 
weight in such a way that ( , , )W t x l l vΔ Δ is the weight of polymer molecules with the 
chain lengths between l and l dl+ located in the volume vΔ centered at the point x at 
the time moment t . Assuming that the monomer molecular weight is mw it is obvious 
that m( , , ) ( , , ),W t x l lw n t x l= where ( , , )n t x l is the density of the distribution of the 
number of polymer molecules with the chain lengths between l  and l dl+  located in the 
volume vΔ  centered at the point x at the time moment t . 
 
Polymer degradation is caused by polymer molecule scission. Let us assume that at any 
time moment a polymer molecule can undergo scission at just one point, i.e. it can be 
broken in just two parts. Let 0 ( , , ) 1R t x l≤ ≤ be the probability of a polymer molecule of 
length l  located at the point x at the time t to be broken into two parts while 

c ( , , , )p t x l L be the density of the conditional probability for a polymer molecule of 
chain length L to be broken into two parts of lengths l and .L l− Obviously, 

c c
0

( , , , ) 0,  ( , , , ) 1
L

p t x l L p t x l L dl≥ =∫  for 0.L >  Suppose that the characteristic time of 

polymer scission is fτ  . Taking into account the motion of the fluid volume along a 
flow streamline from point x  to point x u t+ Δ over the time period tΔ and the balance 
of the polymer molecule weight in the process of this motion and stress-induced 
scission allowing 0tΔ → one obtains the initial-value problem for the kinetic equation 
of polymer scission [Kudish and Covitch, 2010] 
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f

0

2 ( , , ) ( , , , ) ( , , ) ( , , ) ( , , ),    ,

(0, (0), ) ( ),

c
l

W l dLu R t x L p t x l L W t x L R t x l W t x l
t x L

W x l W l

ρ
ρ τ

∞⎧ ⎫∂ ∂ ⎪ ⎪⎛ ⎞+ = −⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠ ⎪ ⎪⎩ ⎭

=

∫ (2) 

 
where differentiation is done along the flow stream lines (see (1)), ρ is the fluid density, 

fτ is the characteristic time of one act of polymer molecule fragmentation, and 0 ( )W l is 
the known initial density of molecular weight distribution at the initial point (0)x on the 
flow streamline at time 0.t =  
 
The probability of scission ( , , )R t x l depends on the nature of polymer additive material 
(i.e. the polymer molecule bond dissociation energy ,U bead radius *,a and bond length 

*l ) as well as the lubricant temperature T  and applied stress Sμ ( S is the shear rate). 
Making an assumption that a polymer molecule breaks only if the deformation energy 
supplied by the lubricant shear stresses applied to the side surface of a polymer 
molecule and accumulated by this molecule per one molecule bond is above the 
dissociation energy for this molecule bond A/U N ( AN is the Avogadro number, 

23 1
A 6.022 10  moleN −= × ) leads to a relatively simple derivation of the formula [Kudish 

and Covitch, 2010] 
 

2 A
2

A
* *2

* *
( , , ) 1 exp 1   if  ;      ( , , ) 0  if  ,

U
kT Ul lR t x l l L R t x l l L

L kT L

α

α⎡ ⎤⎛ ⎞⎛ ⎞
= − − − > = ≤⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
(3) 

 

a A
* 0 0 A2

A* * a
,    ,    ,U UL L L U

NCa l S
μ
μ μ

= = =   (4) 

 
Where k  is Bolzmann’s constant, 231.38 10  / ,k J K−= × aμ is the lubricant viscosity 
before scission, C and α are dimensionless constants which should be determined by 
comparison of theoretical and experimental data. 
 
Derivation of the density of the conditional probability of scission c ( , , , )p t x l L is also 
energy based and can be obtained in the form [Kudish and Covitch, 2010] 
 

c 2 2

4 2 4 ( )( , , , ) ln 2 exp ln 2 .
L l l L lp t x l L
L L
− −⎡ ⎤= −⎢ ⎥⎣ ⎦

  (5) 

 
It is remarkable that the density of the conditional probability of scission c ( , , , )p t x l L is 
independent of x and t as well as any adjustable constants. 
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According to empirical Huggins and Mark-Houwink formulas [Billmeyer, 1962; Crespi, 
Vassori, Slisi, 1977] the lubricant viscosity μ depends on the additive molecular weight 
distribution as follows 
 

2
p H p

a 2
p a H p a 0 0

1 [ ] ( [ ])
,    [ ] ,    ( , , ) / ( , , ) ,

1 [ ] ( [ ] ) W W
c k c

k M M w W t x w dw W t x w dw
c k c

β β βη η
μ μ η

η η

∞ ∞+ +
′= = =

+ + ∫ ∫
  (6) 
 
where pc and [ ]η are the polymer concentration and the intrinsic viscosity, respectively, 

a[ ]η is the intrinsic viscosity before scission, Hk  is the Huggins empirical constant, 
k ′ andβ are the Mark-Houwink empirical constants, mw w l= is the polymer chain 
molecular weight. 
 
It can be shown that the solution of the problem (1)-(6) exists and is unique and 
possesses certain properties [Kudish and Covitch, 2010]. For example, in the process of 
stress-induced degradation of a lubricant in an isolated system the number of polymer 
molecules increases while the average polymer chain length decreases. Equation (2) can 
be numerically integrated with respect to time t  along the flow streamlines using the 
rectangle rule for calculation of integrals. After each step in time the lubricant 
viscosityμ  should be recalculated according to Eqs. (6) which trigger updating the 
probability of scission ( , , )R t x l from formulas (3) and (4). Details of the numerical 
solution can be found in [Kudish and Covitch, 2010]. An example of such numerical 
solution and its comparison with the independently obtained experimental data is 
presented in Figures 1 and 2. The numerical and experimental data with the same initial 
molecular weight distribution 0 ( )W l  were obtained for a lubricant with OCP10 
viscosity improver. The following parameters were accepted for numerical calculations  
 

* *
1

a

347 kJ/mole,  0.154 nm,  0.374 nm,  310K,  

0.00919 Pa×s,  5000 s  and 0.044,  0.008.

U l a T

S Cμ α−
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Figure 1. Polymer molecular weight distributions at different time moments during 

testing of the lubricant with OCP10 VM (A) and obtained from numerical modeling (B) 
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for 347 kJ/U =  mole,  0.044,C = and 0.008α = : dashed-dotted curve – initial 
molecular distribution, dashed curve – after 30 cycles, dotted curve – after 100 cycles, 

solid curve – after 250 cycles (after Kudish, Airapetyan, and Covitch [Kudish, 
Airapetyan, and Covitch, 2003]). Reprinted with the permission from STLE. 

 

 
 

Figure 2. Loss of the lubricant viscosity μ caused by polymer molecule degradation 
versus number of cycles for the lubricant with OCP10 VM obtained for 
347 kJ/mole,  0.044,U C= =  and 0.008α = . Circles indicate the experimentally 

measured relative viscosity of the lubricant with OCP10 VM. 
 
Figure 1 shows a good agreement between the numerical and experimental molecular 
weight distributions while Figure 2 shows the permanent loss of about 10% of lubricant 
viscosity as a result of stress-induced lubricant degradation.Modeling of stress-induced 
lubricant degradation with star polymer additive is more complex and can be reduced to 
solution of a system of a number of somewhat similar to (2) integro-differential 
equations [Kudish and Covitch, 2010]. The number of the equations in the system is 
equal to the maximum number of arms of star polymer molecules in the lubricant 
solution. The comparison of the numerical solutions of the system provides a good 
agreement with the test data. An isothermal problem for a heavily loaded line EHL 
contact with degrading lubricant is considered in [Kudish and Covitch, 2010]. The 
structure of the considered additive was linear. 
 
- 
- 
- 
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