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Summary 

 

In the cold regions, it is common for a floating ice sheet, driven by wind and/or water 

drag forces, to ride up or pile up on the shores of rivers, lakes and seas. In a pile–up 

event, an intact ice sheet shoves itself into a pile of ice blocks, resulting in breaking of 

ice sheet into blocks and deformation of rubble pile. Observations of ice pile up and ride 

up have been recorded for a long time, and sometimes such ice movements have 

damaged structures and riprap shore protection. 

 

Early efforts to estimate forces required to form an ice pile up dealt with mass balance 

and increase in gravitational potential energy, and simple models were presented to 

estimate forces to overcome frictional forces. Advances made in numerical methods, 

such as discrete element modeling (DEM) and particle–in–cell (PIC), led to detailed 

accounting of breakage of intact ice sheet and frictional forces in a rubble pile. Results 

from DEM indicate that the total energy is 7–10 times the increase in gravitational 

potential energy during formation of an ice–rubble pile. Comparisons of results from 

DEM and physical modeling are good, except for more accumulation of ice blocks 

under water in DEM in comparison to that in physical modeling.  

 

Small–scale, physical tests were conducted to assess the damage to riprap shore 

protection by the shoving action and the shearing action of an advancing ice sheet. Two 

type of stone placement have been tested: (a) random and (b) selective. For random 

placement of stones, there was no damage observed during a ride–up event, which 

occurred for shallow–slope (1V:3H) banks. Most of the damage took place during ice 

pile up on steep–slope banks, when the incoming ice sheet moved into the rubble pile, 

causing much displacement of riprap stones. The results of shoving tests indicate that 
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the maximum size of rocks needs to be two times the ice thickness for shallow slopes 

(1V:3H), and three times the ice thickness for steep slopes (2V:3H), to sustain no 

damage to riprap shore protection. For shearing action against random placement of 

rocks, riprap failure always took place when the ice thickness was equal to, or more 

than, the median size of rocks. Some minor damage took place when the median size of 

rocks was 2–3 times the ice thickness. Results from later tests indicate that selective 

placement of rocks offers greater degree of stability during ice shoves than that for 

random placement of rocks. Though selective placement of stones is a more expensive 

method of construction compared to random placement of stones, it requires smaller 

stone size and provides greater resistance to ice shoving action. 

 

1. Introduction  

 

Ice movement on to the land, also known as ice shove or ivus in Inuit, can occur along 

shores of lakes, rivers and seas. An ice movement is caused by wind forces acting on the 

top surface of an ice cover, and/or by water drag forces on the bottom surface. At times, 

changes in water level caused by tides and storm surges can transport an ice sheet a long 

distance inland. In small lakes and reservoirs, thermal expansion of an ice cover can 

lead to an ice cover moving onshore or against structures during spring warm up. 

Coastal protection is designed and constructed to avoid erosion and to protect other 

man-made structure. The action of an ice sheet being pushed to land and forming a 

rubble pile is similar to formation of pressure ridges at the boundary of two ice floes, 

being pushed against each other in the middle of an ice cover. Because of these 

similarities, there is some overlap of discussion on formation of pressure ridges, 

grounded rubble pile and pile up of ice on shores.  

 

The process of rubble formation is complex in which an intact ice sheet is pushed into a 

pile of ice blocks, and the interaction between these two results in breaking of ice sheet 

into blocks and deformation or rearrangement of ice pile. The energy required to push 

an ice sheet into an ice pile is dissipated by increase in gravitational potential energy of 

an ice pile and work done to overcome frictional forces that are activated during 

deformation of an ice pile. Sometimes, an ice pile up can protect a shore or a structure 

by forming consolidated grounded rubble during early winter, thus providing protection 

from further ice action. Events of ice shoves during spring breakup can potentially lead 

to erosion of shores, damage to riprap and destruction of structures. At present, there is 

little guidance for design of armor stone structure to resist damage from ice action. 

Advances made in numerical modeling in the last two decades have increased our 

understanding of the processes and the magnitude of forces. The objectives here are to 

present a review of observations related to ice pile up and ride up, efforts to understand 

the forces involved during these events, and results of theoretical simulations and 

physical model tests. 

 

2. Observations of Ice Pile up and Ride Up 

 

2.1. Thermal Expansion 
 

Thermally induced expansion of ice sheets is a slow process and generally results in ice 

movements of a few meters onto a shore. While thermal expansion results in 
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compressive stresses being developed in an ice cover, creep deformation of ice relaxes 

thermally–induced stresses. Sanderson (1988) discusses the ice forces that are generated 

as a result of thermal expansion of ice being confined between a structure and steep 

shores. Alestalo and Häikiö (1979) give a detailed account of thermally induced 

movement of ice onto shores of many lakes in central Finland. In April 1985 at one 

location in Mackenzie Bay in Canada, the land–fast, sea–ice cover moved about 10 m 

seaward, and the full–thickness stress was estimated from the stress–sensor data to be 

about 300 kPa (Johnson et al. 1985). This amount of internal stress is sufficient to cause 

ice ride up onto a sloping structure. The forces active during thermal expansion of ice 

can result in offshore boulders being gradually pushed onto the land to form boulder 

ridges, the displacement of armor blocks, the destruction of docks and progressive 

failure of dams and piers (Kovacs and Sodhi 1988, Summerville and Burns 1968). 

 

2.2. Wind and Water Driven Ice Shoves 

 

On rivers, large lakes and seas, wind and water induce the main driving force to push 

ice onto shores, overwhelming thermally–induced motion. Material being pushed by ice 

on shores can reach heights of 10–15 m and be “sufficiently continuous to impede 

drainage of small streams into the lake and to produce marshes inland of the ice–shoved 

ridges” (Bird 1967). Kraus (1930) gives an account of an onshore movement that 

occurred in Estonia in April 1868: “The ice at the time was about 0.4 m thick, but along 

the shore it had melted back some 15 m. Strong wind developed over a period of a few 

hours, and the water level rose. Suddenly the ice moved against the land, pushing rocks 

and debris before it and making loud noises. These sounds wakened a man in his house 

just in time to allow him to escape before the ice destroyed the structure. A nearby inn 

was partially destroyed. This event appears to have occurred in less than fifteen 

minutes.” Similar onshore ice shoves, such as one shown in Figure 1, take place on 

shores, and some of these have damaged structures and riprap shore protection in 

Canada and the United States (e. g. Boyd 1981, Tsang 1974, Kovacs and Sodhi 1980, 

Sodhi and Kovacs 1984, Becker et al. 1986, Kovacs 1983, Kovacs 1984, Kovacs and 

Sodhi 1988, Gawne 1999). Keyserling (1863), Alestalo and Häikiö (1975), Girjatowicz 

(in press) and many others have described ride up and pile up events that have taken 

place in northern Europe. Recently, events of ice ride up and pile up in the United States 

can be seen in the video at the following URL: 

http://www.huffingtonpost.com/2013/05/12/lake-mille-lacs-ice-minnesota-

izatys_n_3263630.html 

 

Large boulders up to 2 m in diameter can be pushed across shallow water sediments, 

plowing through them as they go, and this process can results in the formation of 

onshore boulder pavements of heights of about 7 m (Bird 1967, Dione 1979, Mackay 

and Mackay 1977). Boulder pavements are generally found along shores exposed to 

wind or current driven ice movements. This occurrence demonstrates that onshore ice 

movement can provide boulder armor to protect a shore, and also that ice can remove 

shoreline armor. Bruun and Johannesson (1971), Tryde (1972), Danys (1979), 

Christensen (1994) and others have reported on considerable damage to man–made 

armor of coastal structures caused by onshore movement of ice. 
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Figure 1. An ice pile up formed in January 2006 at Barrow, Alaska.(from 

www.gi.alaska.edu/snowice/sea-lake-ice/images/ice_events.html) 

 

In general, the shallower the slope of a beach, more susceptible it is for ice to ride up. 

Rough, irregular or steeply sloping shores will tend to initiate an ice pile up. The forces 

required to initiate onshore ice movement are much reduced if the water level rises as a 

result of tides or storm surge. Under such condition, the ice is lifted free of the seabed or 

elevated at the tide crack and then easily driven onto the shore (Kovacs and Sodhi 

1988). 

 

Pile up and ride up along the banks of a river take place during breakup of ice, when the 

flow rate and water level are high, sometimes leading to ice jams. A breakup of ice on 

rivers leads to fast moving ice, and it can push ice blocks diagonally up the river banks 

or drive against islands or shoreline obstacle. Ten–meter–high pile up of ice on shore 

have been observed in northern rivers. In the case of ice jams, flooding in a populated 

area cause much damage. Significant bank modification, uprooting of trees, gouging of 

topsoil and destruction of structures are some of the common devastations caused by 

river ice (Samochkin 1961, Bolsenga 1968). 

 

The random sequence of ice failures in buckling, bending and fracturing leads to a pile 

of rubble ice. The moving ice sometimes rides over the rubble or goes through the 

rubble pile at other times, increasing in the height and the extent of an ice pile. The 

angle between the sloping surface of an ice pile and the horizon ranges from 30º to 45º 

with an average of 37º. Some of the highest pile up is reported to be about 15 m 

(Kovacs and Sodhi 1988). A history of ice pile up or ride up events along a coastline 

may provide information to indicate locations where these events are frequent or severe 

(Harper and Owen 1981). In general, more exposed a shore is to drift ice, the greater is 

the possibility that an ice impingement against the shore is likely to happen. 
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