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Summary 

 

Strong effects of climate change are taking place in the Arctic. This climatic evolution 

is going to have significant impacts on both marine ecosystems and human activities in 

the Arctic. Due to the decline of sea ice in the Arctic, the maritime traffic in icy waters, 

in particular along the Northern Sea Route (NSR), the northern seaway connection 

between Europe and Far East, has increased significantly. Likewise, the activities 

related to the extraction of oil and gas has been increasing in the Arctic. Both the use of 

ice-going vessels and marine structures in ice-covered waters is a particular challenge in 

terms of environmental protection because it is associated with risks. To avoid 

interfering influences of the environment, ships and marine structures should be 

designed in such a way, so that the risk of an accident or damage due to ice and other 

prevailing environmental conditions (e.g. wind and waves) is minimized. In this context 

the ice forces acting on ships or offshore structures play a significant role. 

 

In the past, the implementation of numerical and physical model testing has proven to 

help investigate the behavior of ships and marine structures in different ice scenarios. 

The insights gained from the experiments provide a basis for a sustainable and 

innovative technology of ice-breaking ships and marine structures in ice. In this chapter 

special emphasis is placed on description of similarity laws, model ice production 

process and presents various methods to determine the mechanical properties of model 

ice. This chapter gives a general overview only, thus the reader is advised to study the 

relevant literature. 
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1. Introduction  

 

Physical models have been used for long time and are still currently used in the field of 

ice engineering to investigate natural processes because numerical models have not yet 

been able to simulate such complex processes. Physical modeling is used as a design 

tool for marine structures worldwide. The prevalence of hydraulics and hydrodynamics 

laboratories in research institutes across the world is testimony to the continued 

importance and influence of physical model testing in ice engineering today. This 

history and practice of hydraulic modeling has been reported in many books and papers.  

 

Over the years technology has improved and the tools, techniques and procedures used 

in ice model tests have evolved. The rate of technological change has never been greater 

and new tools and techniques to improve the range of services offered by hydraulic and 

hydrodynamic laboratories are successively developed (Sutherland and Evers, 2013).  

 

Qualitatively physical models are close simulations of the prototype and contribute to 

obtain a better understanding of the various processes and to see aspects in the model 

that are not obvious from prototype observations. Also trial and error changes that 

would be costly or impossible to make in the prototype are simple and inexpensive in 

the model, e.g. hull shape optimization of an icebreaking vessel.  

 

The physical model simulates the prototype closely and therefore a physical model 

provides qualitative results, also for problems for which the processes are not well 

understood or well described by theory. Complex nonlinear physical processes, for 

example, can be reproduced in a well-designed physical model. 

 

When designing a physical model the scales must be determined for the various model 

parameters. Model scales may be derived either from the governing equations or by 

dimensional analysis. Both methods have their strengths and limitations and hence both 

should be used. Neither method can completely describe a physical model since a model 

simulates the prototype better than either equations or dimensional analysis. That is why 

physical models are used (Kamphuis, W.J. 2000). 

 

Icebreaking vessels, fixed and moored floating offshore structures (e.g. GBS, FPSO, 

FPU, buoys, SPAR , tension leg platforms and semi-submersibles) in cold regions may 

be subjected to different sea ice conditions. For design purpose it is essential to estimate 

the ice forces acting on the structure, the mooring system and its behavior in different 

ice conditions, like level ice, broken ice, ice ridges and ice rubble fields. Therefore ice 

model tests are carried out in ice facilities for various types of offshore structures to 

investigate the ice-structure interaction.  

 

In general, the principles and similitude laws for model tests of structures in ice are 

based on commonly agreed theories and laws similar to model testing in open water. 

The primary purpose of this chapter is to give advice and background information on ice 

model testing of icebreaking ships, fixed and floating structures, to understand the 

important issues that should be taken into account when planning and conducting ice 

model tests. 
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In this chapter, the focus is placed on the physical modeling of sea ice. Modeling of 

river and lake ice is not subject to this chapter. 

 

2. History of Model Ice Development 

 

Physical modeling of ice-structure interaction has become an important technique in 

determining the ice loads and optimizing the design of ice breaking vessels, arctic 

offshore structures, etc. The first use of a material to model natural ice behavior in scale 

physical models dated back to 1918 when blocks of paraffin wax were used to model 

ice movement on flowing water (USDI, 1980). Paraffin blocks were also used in 1949 

for the first reported model of ice jamming on the St. Francis River near Bromptonville, 

Quebec (FENCO 1949). Since then, many alternative materials have been developed 

and adapted for use as model ice in physical models of diverse ice processes. (Zufelt 

and Ettema, 1996). 
 

Sutherland and Evers (2013) gave a good history of model ice development. Today 

hydrodynamics facilities in Canada, U.S.A., Germany, Russia, Finland, Japan and 

Korea are operating ice tanks and refrigerated laboratories. 

 

Model ice is an integral part of the physical modeling process of ice-structure 

interaction. The model ice must represent as accurately as possible the full scale 

mechanical sea ice properties (Sinha, 1987). Froude and Cauchy scaling laws are used 

for the majority of ice model tests so that the prototype structure is reduced in its linear 

dimensions by a constant scale factor   . 

  

The properties of the model ice must be adjusted such that its strength (compressive, 

flexural, shear and tensile), stiffness and thickness must be reduced from the full scale 

or prototype value by  , however its density and frictional characteristics must be the 

same as the full scale values. It is important that the model ice is an accurate 

representation of the prototype ice -either freshwater ice or sea ice. (Timco, 1986). 

 

In the first model tests with ice in St. Petersburg, Russia in 1957 (Shvayshteyn, 1957), 

the model ice was produced by freezing an aqueous solution containing a relatively high 

(~3%) concentration of sodium chloride salt. The salt was trapped within the ice and by 

internal melting, reduced the strength of the ice. This type of ice however, was not 

satisfactory because its stiffness (or strain modulus) was far too low and the ice 

exhibited unrealistic plastic deformation (Timco, 1986). 

 

In Canada a synthetic model ice was developed by Michel in 1969, which was patented 

and used by a private company in Canada and the US. However the use of this type of 

model ice has not been pursued further. 

 

Schwarz (1975) developed a tempering technique whereby sheets of ice were frozen 

from solutions containing a lower concentration of sodium chloride (0.6%) and by 

warming up the ice after freezing process. The improvement due to this technique is a 

more accurately scaled stiffness of the ice sheet compared to ice sheets containing 

higher concentrations of sodium chloride salt.  
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In 1979 Timco developed a refrigerated model ice grown from an aqueous solution 

containing urea as a chemical dopant, in order to achieve lower model ice strength 

compared to pure freshwater model ice. This type of ice has a thin upper granular 

congelation layer of which can be minimized by seeding and growing the ice sheet at 

the lowest temperature that can be achieved (Zufelt and Ettema, 1996). 

 

Furthermore experiments with different chemical dopants were made and in 1986 

Timco introduced a new type of model ice – termed EG/AD/S ice – containing ethylene 

glycol, aliphatic detergent and sugar. This type of model ice is single-layered without a 

congelation layer and has a fine grained and strictly columnar crystal structure. This 

EG/AD/S ice produces flexural strength f , elastic modulus E , and f/E   ratio values 

that are very close to those of urea-doped ice, but it has more realistic fracture-

toughness performance, and thus cracking replication, because it is nearly single-layered 

(Zufelt and Ettema, 1996; Timco, 1986). 

 

A type of fine-grained model ice called WARC FG-ice was developed in Finland 

(Enkvist and Mäkinen, 1984) The ice sheet is grown by continuously spraying tank 

water (at 2% saline concentration) above an initially seeded sheet at room temperatures 

of –16 to –22C. It is reported that similar results have been obtained using a 3% urea 

solution with the same growing technique, but that the urea provides no inherent 

advantage over the less costly NaCl (Zufelt and Ettema, 1996). The FG-ice is a fine-

grained granular structured model ice which has several promising features. However, 

the granular structure limits the use of the ice since it does not accurately represent the 

structure of sea ice which is mostly columnar. The fine-grained model ice does not 

allow the ice to be scaled correctly in either uni-axial compressive strength or confined 

compressive strength (Timco, 1986). This may lead to a premature ice failure and a 

corresponding under-prediction of the loads on the full scale structure (Timco, 1984b; 

Wang, 1984). The WARC-FG has been modified by spraying a 2% saline solution, 

spraying is conducted with water of saline concentration varying between 0.1 and 1.6%. 

It is reported that WARC FGX-ice has better strength simulation characteristics than 

does WARC-FG ice (Nortala-Hoikkanen, 1990). 

 

At the NKK Ice Model Basin in Japan the ice sheet production is similar to that of the 

FG- or FGX-ice. The tank water urea concentration is held at 2.5% and the spray water 

concentration at 0.5 to 1.3%. This allows the tank water temperature to be brought down 

to –0.4C (the approximate freezing point of the spray water yet still above the tank 

water freezing point) prior to seeding. The difference in concentrations of the tank and 

spray water prevent the growth of columnar ice at the bottom of the initial ice sheet 

during consolidation and tempering (Narita et al., 1988).  

 

In 1989 the Helsinki University of Technology (HUT) rebuilt their ice model basin and 

sought an ice material that was fine-grained and brittle to properly model icebreaker 

testing. HUT uses only 0.5% ethanol as a dopant as a noncorrosive, nonhealth-

hazardous material. The resulting GE (granular ethanol) ice is produced by continuous 

spraying over the basin at air temperatures of approximately –10C (Jalonen and Ilves, 

1990). 
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Until late 1980’s The Hamburg Ship Model Basin (HSVA) produced a refrigerated 

model ice grown from an aqueous solution containing urea as a chemical dopant by 

application of a seeding technique. This type of model ice is strictly columnar structured 

but has a thin upper granular layer. The brine is entrapped along the boundaries of 

columnar ice crystals. Some time before the target ice thickness is achieved the ice 

growing process is stopped and the ice is warmed up at a constant air temperature to 

achieve the desired strength in the model regime.  

 

Investigations with respect to the improvement of ice properties were made by using 

various dopants like EG/AD/S and glycerol instead of urea. However, on one hand these 

chemical dopants reduce the translucence in the water and glycerol is rather costly. The 

aspect of excellent water translucence is important, because the observation of ice 

failure processes, propeller-ice interaction and ice clearing by means of underwater 

video recording. On the other hand the content of sugar in the EG/AD/S dopant may 

cause bacterial pollution and the chemical stability of the dopant with sugar additive 

cannot be easily maintained. 

 

Thus, today an aqueous solution containing sodium chloride (~0.7% concentration) is 

used as dopant at HSVA in combination with air bubble entrapment, in order to get a 

stable chemical condition in the tank water and to improve the mechanical properties. 

 

By using a single dopant system the grown model ice sheet consists of a three-layer 

system: 

 

- thin hard upper granular layer 

- transition layer with higher dopant concentration 

- weak columnar crystal layer 

 

Figure 2-1 shows a thin section of first-year sea ice. The structure of this type of ice is 

columnar with a thin hard granular layer on top. Since the model ice is denser than in 

full scale, the criteria for buoyancy similitude may not be met. Thus methods were 

developed at NRC Canada for EG/AD/S CD-ice (Spencer and Timco, 1990) and HSVA, 

Germany, for NaCl doped model ice to incorporate air bubbles (see Figure 2-2) into a 

growing ice sheet in order to control its overall density (Evers and Jochmann, 1993).  

 

For this purpose a new model ice production technique (Evers and Jochmann, 1993, 

Hellmann et al.,1992) was developed at HSVA and is applied by pressing air saturated 

water under high pressure through perforated tubes fixed at the bottom of the ice tank 

during ice growth process at about – 20°C air temperature. When the water leaves the 

tubes the pressure drops. Tiny air bubbles of 200-500 m diameter which rise upwards 

and are embedded in the growing ice sheet. The content of micro bubbles affects also 

the f/E   ratio which increases significantly and the ice behaves more brittle when it 

fails. A secondary effect of air inclusions is the opaque color of the ice giving a better 

contrast between model and ice in images taken from underwater (Evers and Jochmann, 

1993). 
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Figure 2-1. Thin section of first-year ice showing the ice platelets and the brine pockets 

along the grain boundaries (photo courtesy of M. Johnston; Timco & Weeks 2010b). 

 

 
 

Figure 2-2. Vertical and horizontal thin sections with micro bubble inclusions in model 

ice. 
 

3. Similitude Considerations and Scaling 

 

The application of physical models is a well established engineering practice, especially 

in hydraulics and the design of ships and offshore structures (Hughes 1993; Chakrabarti 

1994). William Froude (1810-1879) studied the resistance of ships in a towing tank in 

1870, which involved inertial and gravitational forces. Osbourne Reynolds (1842-1912) 

developed the Reynolds number in his study of flow in parallel pipes to distinguish 

between laminar and turbulent flow conditions. (Briggs, 2013). 

 

The Cauchy number 
3/2

p m   is one of the dimensionless numbers  of physics. It is 

named after Augustin Louis Cauchy (1789-1857) and gives the ratio of inertial forces to 

the elastic forces in solids. Furthermore, it is used in the similarity theory. Two 

processes which take place mainly under inertial and elastic forces are mechanically 

similar if their Cauchy numbers match. 
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The Froude, Reynolds and Cauchy numbers are the most important non-dimensional 

similarity parameters used in physical ice modeling. To insure total similitude in model 

tests, the Froude-, Reynolds- and Cauchy numbers must match those of the proptotype. 

This is virtually not possible unless a fluid used in tanks can be found where 
3/2

p m    ( = viscosity,    = scale factor, m  index for model and p   index for 

prototype). Because doped water in the tank is the working fluid, its viscosity is very 

close to that of pure water, hence the condition is not accomplished and therefore the 

viscous effects cannot be modeled correctly. At low speeds this is in general not a 

problem but has to be kept in mind for high speed tests or if tests are conducted at high 

scale factor (Timco, 1984a). The effects of such non-similarity are called “scale effect”. 

The model boundaries should simulate the prototype conditions as closely as possible, 

but a perfect simulation can never be achieved. For example due to the limited width of 

the ice tank the tank walls cause a confinement of the ice sheet. This phenomenon must 

be taken into account when tests in managed ice (ice floes) are conducted. The 

difference in response between the model and the prototype resulting from such 

simplified boundary conditions is called “laboratory effect”. 

 

When conducting ice model tests the behavior of the vessel or structure must be similar 

as in full scale. If this requirement is fulfilled the results for the model can be 

transferred to full scale by a proportionality factor  . 

 

The discussion is separated into: 

 geometrical similitude 

 kinematical similitude 

 dynamical similitude 

  

3.1. Geometrical Similitude 

 

The ratio of full-scale prototype “length” (e.g. length, width, draught etc.) pL  to a 

model-scale “length” mL  is constant:  

 

p mL L
 

 (3-1) 

 

For areas A  and volumes    one gets correspondingly: 

 
2

p mA A
 

 (3-2) 

  
3

p m 
 

 (3-3) 

 

where   is the displaced volume. 

  

3.2. Kinematical Similitude 

 

The ratio of full-scale prototype “time” pT  to a model-scale “time” mT  is constant and 

named kinematic model scale factor  
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p mT T
 

 (3-4) 

  

Geometrical and kinematic similitude result in the following scaling factors for 

“velocities” V  and accelerations a : 

 

p m/( )V V 
 

 (3-5) 

  
2

p m/( )a a 
 

 (3-6) 

  

- 

- 

- 
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